Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 414(1): 713-720, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34693472

RESUMEN

The topology of DNA is a critical quality attribute for plasmid-based pharmaceuticals, making quantification of trace levels of plasmid topoisomers an important analytical priority. An automated and cost-effective method based on capillary gel electrophoresis laser-induced fluorescence detection is described. The method outlined in this report is significant because it is easily implemented by any laboratory for which routine analyses of plasmid topology are critical for the development of new plasmid-based therapies as well as for quality control of gene therapies utilizing supercoiled DNA. Detection of topoisomers was achieved by incorporating ethidium bromide in the separation medium. The detector response was improved by 3 orders of magnitude by utilizing a 605-nm optical filter with a 15-nm bandwidth. Separations of linear, open circle, supercoiled, and multimer DNA plasmids ranging from 4.2 to 10.5 kbp were accomplished in under 6 min using an unmodified fused silica capillary (50-µm internal diameter). The background electrolyte was comprised of 0.5% gel, which was hydroxypropylmethyl cellulose, 1 mM ethylenediaminetetraacetic acid, and 50 mM N-(2-acetamido)-2-aminoethanesulfonic acid (pH of 6.25). The separations, which balanced the bulk electroosmotic flow, the electrophoretic mobility of the DNA, and gel sieving were dependent upon the pH of the electrolyte and the gel concentration. Reproducibility was dependent upon the procedure used to prepare the gel as well as other factors including the ethidium bromide concentration and capillary conditioning. A single unmodified capillary operated for more than 150 runs had an across-day migration time precision of 1% relative standard deviation and percent area precision of 10% relative standard deviation.


Asunto(s)
Capilares , Dióxido de Silicio , Capilares/química , ADN/genética , Electroforesis Capilar/métodos , Rayos Láser , Reproducibilidad de los Resultados
2.
Anal Chem ; 93(3): 1537-1543, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33382256

RESUMEN

Protein sieving, which is a fundamental tool in the biotechnology field, can be automated using capillary gel electrophoresis. The high-viscosity and biocompatible linear gels required for capillary sieving must be replaced for each run using high pressures. Thermally responsive gels are easier to renew in the capillary as they can be repetitively switched between low- and high-viscosity solutions. A thermally responsive sieving gel was recently demonstrated to separate DNA, which is a larger biomolecule than proteins. This material required no synthesis as it was self-assembled from common phospholipids. Nanogels composed of dimyristoyl-sn-glycero-2-phosphocholine and 1,2-dihexanoyl-sn-glycero-3-phosphocholine exhibit thermally reversible viscosity within a 10 °C temperature change, forming a sieving matrix above 24 °C. Additionally, these nanogels are nondenaturing and have been demonstrated to preserve the activity of enzymes. In this report, a phospholipid nanogel is used for the first time for capillary gel electrophoresis separations of proteins. The mobilities in buffer and nanogel demonstrated that 20-30% nanogel supports sieving of proteins ranging from 20 to 80 kDa. Capillary separations based on sieving rather than electrophoresis had similar precision in both area and migration time as well as similar separation efficiencies. However, the migration time increased with gel concentration. The nanogel was used for the analysis of proteins in human serum. Proteins in the sample were more effectively resolved and quantified with capillary sieving compared to free-solution capillary electrophoresis. This allowed for accurate quantification.


Asunto(s)
Proteínas Sanguíneas/análisis , Nanogeles/química , Electroforesis Capilar , Humanos , Temperatura
3.
Anal Chem ; 92(1): 1518-1524, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31829566

RESUMEN

Sialylation and sialic acid linkage in N-glycans are markers of disease but are analytically challenging to quantify. A capillary electrophoresis method is reported that integrates a unique combination of enzymes and lectins to modify sialylated N-glycans in real time in the capillary so that N-glycan structures containing α2-6-linked sialic acid are easily separated, detected, and quantified. In this study, N-glycans were sequentially cleaved by enzymes at the head of the separation capillary so that the presence of α2-6-linked sialic acids corresponded to a shift in the analyte migration time in a manner that enabled interpretation of the N-glycan structure. Following injection, only afucosylated N-glycan structures were passed through enzyme zones that contained α2-3 sialidase, followed by ß1-3,4 galactosidase, which cleaved any terminal α2-3-linked sialic acid and underlying galactose yielding a terminal N-acetyl glucosamine. With this treatment complete, a third zone of α2-3,6,8 sialidase converted the remaining α2-6-linked sialic acid to terminal galactose. With these enzyme processing steps the α2-6-linked sialic acid residues on an N-glycan correlated directly to the number of terminal galactose residues that remained. The number of terminal galactose residues could be interpreted as a stepwise decrease in the migration time. Complex N-glycans from α-1-acid glycoprotein were analyzed using this approach, revealing that a limited number of α2-6-linked sialic acids were present with biantennary, triantennary, and tetraantennary N-glycans of α-1-acid glycoprotein generally containing 0 or 1 α2-6-linked sialic acid.


Asunto(s)
Ácido N-Acetilneuramínico/análisis , Nanogeles/química , Polisacáridos/análisis , Electroforesis Capilar , Humanos , Estructura Molecular
4.
Chem Rev ; 118(17): 7867-7885, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-29528644

RESUMEN

Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.


Asunto(s)
Electroforesis Capilar/métodos , Polisacáridos/química , Conformación de Carbohidratos , Ensayos Analíticos de Alto Rendimiento , Monosacáridos/química , Oligosacáridos/química , Pirenos/química , Coloración y Etiquetado
5.
Methods ; 146: 93-106, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29499329

RESUMEN

Capillary electrophoresis provides a rapid, cost-effective platform for enzyme and substrate characterization. The high resolution achievable by capillary electrophoresis enables the analysis of substrates and products that are indistinguishable by spectroscopic techniques alone, while the small volume requirement enables analysis of enzymes or substrates in limited supply. Furthermore, the compatibility of capillary electrophoresis with various detectors makes it suitable for KM determinations ranging from nanomolar to millimolar concentrations. Capillary electrophoresis fundamentals are discussed with an emphasis on the separation mechanisms relevant to evaluate sets of substrate and product that are charged, neutral, and even chiral. The basic principles of Michaelis-Menten determinations are reviewed and the process of translating capillary electrophoresis electropherograms into a Michaelis-Menten curve is outlined. The conditions that must be optimized in order to couple off-line and on-line enzyme reactions with capillary electrophoresis separations, such as incubation time, buffer pH and ionic strength, and temperature, are examined to provide insight into how the techniques can be best utilized. The application of capillary electrophoresis to quantify enzyme inhibition, in the form of KI or IC50 is detailed. The concept and implementation of the immobilized enzyme reactor is described as a means to increase enzyme stability and reusability, as well as a powerful tool for screening enzyme substrates and inhibitors. Emerging techniques focused on applying capillary electrophoresis as a rapid assay to obtain structural identification or sequence information about a substrate and in-line digestions of peptides and proteins coupled to mass spectrometry analyses are highlighted.


Asunto(s)
Electroforesis Capilar/métodos , Enzimas/metabolismo , Electroforesis Capilar/tendencias , Inhibidores Enzimáticos/química , Enzimas/química , Cinética
6.
Anal Chem ; 89(1): 929-936, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27936604

RESUMEN

Phospholipid nanogels enhance the stability and performance of the exoglycosidase enzyme neuraminidase and are used to create a fixed zone of enzyme within a capillary. With nanogels, there is no need to covalently immobilize the enzyme, as it is physically constrained. This enables rapid quantification of Michaelis-Menten constants (KM) for different substrates and ultimately provides a means to quantify the linkage (i.e., 2-3 versus 2-6) of sialic acids. The fixed zone of enzyme is inexpensive and easily positioned in the capillary to support electrophoresis mediated microanalysis using neuraminidase to analyze sialic acid linkages. To circumvent the limitations of diffusion during static incubation, the incubation period is reproducibly achieved by varying the number of forward and reverse passes the substrate makes through the stationary fixed zone using in-capillary electrophoretic mixing. A KM value of 3.3 ± 0.8 mM (Vmax, 2100 ± 200 µM/min) was obtained for 3'-sialyllactose labeled with 2-aminobenzoic acid using neuraminidase from Clostridium perfringens that cleaves sialic acid monomers with an α2-3,6,8,9 linkage, which is similar to values reported in the literature that required benchtop analyses. The enzyme cleaves the 2-3 linkage faster than the 2-6, and a KM of 2 ± 1 mM (Vmax, 400 ± 100 µM/min) was obtained for the 6'-sialyllactose substrate. An alternative neuraminidase selective for 2-3 sialic acid linkages generated a KM value of 3 ± 2 mM (Vmax, 900 ± 300 µM/min) for 3'-sialyllactose. With a knowledge of Vmax, the method was applied to a mixture of 2-3 and 2-6 sialyllactose as well as 2-3 and 2-6 sialylated triantennary glycan. Nanogel electrophoresis is an inexpensive, rapid, and simple alternative to current technologies used to distinguish the composition of 3' and 6' sialic acid linkages.


Asunto(s)
Ácido N-Acetilneuramínico/análisis , Ácido N-Acetilneuramínico/química , Nanopartículas , Neuraminidasa/química , Clostridium perfringens/enzimología , Electroforesis Capilar , Geles/química , Neuraminidasa/metabolismo
7.
Anal Bioanal Chem ; 407(23): 6923-38, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25935677

RESUMEN

This review of capillary electrophoresis methods for DNA analyses covers critical advances from 2009 to 2014, referencing 184 citations. Separation mechanisms based on free-zone capillary electrophoresis, Ogston sieving, and reptation are described. Two prevalent gel matrices for gel-facilitated sieving, which are linear polyacrylamide and polydimethylacrylamide, are compared in terms of performance, cost, viscosity, and passivation of electroosmotic flow. The role of capillary electrophoresis in the discovery, design, and characterization of DNA aptamers for molecular recognition is discussed. Expanding and emerging techniques in the field are also highlighted.


Asunto(s)
ADN/análisis , ADN/genética , Electroforesis Capilar/instrumentación , Electroforesis Capilar/métodos , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Aptámeros de Nucleótidos/análisis , Aptámeros de Nucleótidos/síntesis química , Aptámeros de Nucleótidos/genética , ADN/química , Diseño de Fármacos
8.
Int J Mol Sci ; 15(8): 14332-47, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25196435

RESUMEN

Widespread use of the chlorotriazine herbicide, atrazine, has led to serious environmental and human health consequences. Current methods of detecting atrazine contamination are neither rapid nor cost-effective. In this work, atrazine-specific single-stranded DNA (ssDNA) molecular recognition elements (MRE) were isolated. We utilized a stringent Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology that placed the greatest emphasis on what the MRE should not bind to. After twelve rounds of SELEX, an atrazine-specific MRE with high affinity was obtained. The equilibrium dissociation constant (Kd) of the ssDNA sequence is 0.62 ± 0.21 nM. It also has significant selectivity for atrazine over atrazine metabolites and other pesticides found in environmentally similar locations and concentrations. Furthermore, we have detected environmentally relevant atrazine concentrations in river water using this MRE. The strong affinity and selectivity of the selected atrazine-specific ssDNA validated the stringent SELEX methodology and identified a MRE that will be useful for rapid atrazine detection in environmental samples.


Asunto(s)
Atrazina/química , ADN de Cadena Simple/química , Técnicas In Vitro
9.
Electrophoresis ; 32(24): 3491-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22102160

RESUMEN

CE separations of glycans taken from the cancer drug, Trastuzumab (Herceptin(®)), were accomplished using phospholipid additives. Glycans were labeled with 1-aminopyrene-3,6,8-trisulfonic acid and were separated with efficiencies as high as 510000 theoretical plates in a 60.2 cm 25 µm id fused-silica capillary. The thermally tunable phospholipid was loaded into the capillary when it possessed a viscosity similar to that of water. The temperature was increased, and the separations were performed when the material exhibited higher viscosity. Enzymes were integrated into the separation with the phospholipid additive. Neuraminidase, ß1-4 galactosidase, and ß-N-acetylglucosaminidase were injected into the capillary without covalent modification and used for enzyme hydrolysis. Exoglycosidase enzymes cleaved the terminal glycan residues. The glycan sequence could be verified based on enzyme specificity. Neuraminidase was used to determine total glycan content of the low-abundance glycans containing sialic acid. ß1-4 Galactosidase and ß-N-acetylglucosaminidase were used sequentially in-capillary, to determine the structure of the high-abundance glycans.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Electroforesis Capilar/métodos , Glicerofosfolípidos/química , Glicósido Hidrolasas/metabolismo , Polisacáridos/análisis , Acetilglucosaminidasa/metabolismo , Anticuerpos Monoclonales Humanizados/metabolismo , Secuencia de Carbohidratos , Glicerofosfolípidos/metabolismo , Neuraminidasa/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Trastuzumab , beta-Galactosidasa/metabolismo
10.
J Chromatogr A ; 1523: 90-96, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647147

RESUMEN

A thermally responsive nanogel is used to create stationary zones of enzyme and lectin in a separation capillary. Once patterned in the capillary, analyte is driven through the zone, where it is converted to a specific product if an enzyme is used or captured if a lectin is used. These stationary zones are easily expelled after the analysis and then re-patterned in the capillary. The nanogel is compatible with enzymes and lectins and improves the stability of galactosidase, enabling more cost-effective use of biological reagents that provide insight into glycan structure. A feature of using stationary zones is that the reaction time can be controlled by the length of the zone, the applied field controlling the analyte mobility, or the use of electrophoretic mixing by switching the polarity of the applied voltage while the analyte is located in the zone. The temperature, applied voltage, and length of the stationary zone, which are factors that enhance the performance of the enzyme, are characterized. The combined use of enzymes and lectins in capillary electrophoresis is a new strategy to advance rapid and automated analyses of glycans using nanoliter volumes of enzymes and lectins. The applicability of this use of stationary zones of enzyme and lectin in capillary electrophoresis is demonstrated with the identification of ß(1-3)-linked galactose in N-glycan.


Asunto(s)
Técnicas de Química Analítica/métodos , Electroforesis Capilar , Galactosa/análisis , Lectinas de Plantas/química , Polietilenglicoles/química , Polietileneimina/química , Polisacáridos/química , Galactosidasas , Nanogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA