Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Leuk Res ; 110: 106663, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34304129

RESUMEN

In silico simulation of pre-clinical and clinical data may accelerate pre-clinical and clinical trial advances, leading to benefits for therapeutic outcomes, toxicity and cost savings. Combining this with clonal architecture data may permit truly personalized therapy. Chronic lymphocytic leukemia (CLL) exhibits clonal diversity, evolution and selection, spontaneously and under treatment pressure. We apply a dynamic simulation model to published CLL clonal architecture data to explore alternative therapeutic strategies, focusing on BTK inhibition. By deriving parameters of clonal growth and death behavior we model continuous vs time-limited ibrutinib therapy, and find that, despite persistence of disease, time to clinical progression may not differ. This is a testable hypothesis. We model IgVH-mutated CLL vs unmutated CLL by varying proliferation and find, based on the limited available data about clonal dynamics after such therapy, that there are differences predicted in response to anti-CD20 efficacy. These models can suggest potential clinical trials, and also indicate what additional data are needed to improve predictions. Ongoing work will expand modeling to agents such as venetoclax and to T cell therapies.


Asunto(s)
Adenina/análogos & derivados , Células Clonales/patología , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Mutación , Piperidinas/uso terapéutico , Rituximab/uso terapéutico , Adenina/uso terapéutico , Antineoplásicos Inmunológicos/normas , Antineoplásicos Inmunológicos/uso terapéutico , Evolución Clonal , Células Clonales/efectos de los fármacos , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Pronóstico
2.
PLoS One ; 10(6): e0130590, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26068800

RESUMEN

Indolent B- cell non-Hodgkin lymphoma can transform into aggressive lymphoma. We extend our prior mathematical model to analyze and predict transformation. To provide additional confidence in our model, we compare it with SCID mouse data for combination therapy of Diffuse Large B-cell Lymphoma, an aggressive form of the disease. We develop a two cell model that includes indolent and aggressive clones but no immune response and use it to predict transformation. An approximate model for the time to transformation is derived that provides insight regarding scaling effects. We then add an immune response and therapeutic measures, and illustrate the complex interactions among the various processes, with a focus on transformation. The implications for initial diagnosis and treatment of non-Hodgkin lymphoma are discussed.


Asunto(s)
Progresión de la Enfermedad , Linfoma de Células B Grandes Difuso/patología , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Células Clonales , Inmunidad/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/inmunología , Ratones SCID , Modelos Biológicos , Rituximab/farmacología , Rituximab/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Factores de Tiempo
3.
PLoS One ; 8(12): e81672, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324715

RESUMEN

A parametric model of tumor response to combination therapy in the presence of an immune system is described. Synergistic mechanisms which induce tumor regression are simulated with a coupled set of equations. The simulations are first compared to tumor history data obtained with a SCID mouse model to determine key parameters; predictions are then made for an immune-competent animal. The minimum immune cell birth rate relative to malignant B-cell birth rate necessary to induce tumor regression is determined, and optimization of drug combinations in the presence of an immune response is explored. The delayed effect of an immune response relative to drug scheduling is examined, and a mechanism for disease transformation in heterogeneous tumors is proposed.


Asunto(s)
Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/inmunología , Modelos Biológicos , Animales , Antígenos CD20/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Linfoma no Hodgkin/patología , Imagen por Resonancia Magnética , Ratones , Ratones SCID , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factores de Tiempo
4.
PLoS One ; 7(12): e51736, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272153

RESUMEN

The development and clinical testing of drug combinations for the treatment of Non-Hodgkin Lymphoma (NHL) and other cancers has recently shown great promise. However, determining the optimum combination and its associated dosages for maximum efficacy and minimum side effects is still a challenge. This paper describes a parametric analysis of the dynamics of malignant B-cells and the effects of an anti-sense oligonucleotide targeted to BCL-2 (as-bcl-2), anti-CD-20 (rituximab) and their combination, for a SCID mouse human lymphoma xenograft model of NHL. Our parametric model is straightforward. Several mechanisms of malignant B-cell birth and death in the nodal micro-environment are simulated. Cell death is accelerated by hypoxia and starvation induced by tumor scale, by modification of anti-apoptosis with as-bcl-2, and by direct kill effects of rituximab (cell kill by cytotoxic immune cells is not included, due to the absence of an immune system in the corresponding experiments). We show that the cell population dynamics in the control animals are primarily determined by K*, the ratio of rate constants for malignant cell death, K(d), and cell birth, K(b). Tumor growth with independent treatments is reproduced by the model, and is used to predict their effect when administered in combination. Malignant cell lifetimes are derived to provide a quantitative comparison of the efficacy of these treatments. Future experimental and clinical applications of the model are discussed.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Linfoma no Hodgkin/tratamiento farmacológico , Modelos Biológicos , Oligonucleótidos/administración & dosificación , Animales , Terapia Combinada , Modelos Animales de Enfermedad , Quimioterapia Combinada , Humanos , Linfoma no Hodgkin/diagnóstico , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA