Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 291(27): 14324-14339, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226550

RESUMEN

Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ADN/química , Daño del ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Oxidación-Reducción , Especificidad por Sustrato
2.
bioRxiv ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39229113

RESUMEN

Senescent cells (SnC) accumulate in aging tissues, impairing their ability to undergo repair and regeneration following injury. Previous research has demonstrated that targeting tissue senescence with senolytics can enhance tissue regeneration and repair by selectively eliminating SnCs in specific aged tissues. In this study, we focused on eliminating SnC skin cells in aged mice to assess the effects on subsequent wound healing. We applied ABT-263 directly to the skin of 24-month-old mice over a 5-day period. Following topical ABT-263, aged skin demonstrated decreased gene expression of senescent markers p16 and p21, accompanied by reductions in SA-ß-gal and p21-positive cells compared to DMSO controls. However, ABT-263 also triggered a temporary inflammatory response and macrophage infiltration in the skin. Bulk RNA sequencing of ABT-263-treated skin revealed prompt upregulation of genes associated with wound healing pathways, including hemostasis, inflammation, cell proliferation, angiogenesis, collagen synthesis, and extracellular matrix organization. Aged mice skin pre-treated with topical ABT-263 exhibited accelerated wound closure. In conclusion, topical ABT-263 effectively reduced several senescence markers in aged skin, thereby priming the skin for improved subsequent wound healing. This enhancement may be attributed to ABT-263-induced senolysis which in turn stimulates the expression of genes involved in extracellular matrix remodeling and wound repair pathways.

3.
J Invest Dermatol ; 144(3): 621-632.e1, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37716650

RESUMEN

Transcriptional profiling demonstrated markedly reduced type I IFN gene expression in untreated mycosis fungoides (MF) skin lesions compared with that in healthy skin. Type I IFN expression in MF correlated with antigen-presenting cell-associated IRF5 before psoralen plus UVA therapy and epithelial ULBP2 after therapy, suggesting an enhancement of epithelial type I IFN. Immunostains confirmed reduced baseline type I IFN production in MF and increased levels after psoralen plus UVA treatment in responding patients. Effective tumor clearance was associated with increased type I IFN expression, enhanced recruitment of CD8+ T cells into skin lesions, and expression of genes associated with antigen-specific T-cell activation. IFNk, a keratinocyte-derived inducer of type I IFNs, was increased by psoralen plus UVA therapy and expression correlated with upregulation of other type I IFNs. In vitro, deletion of keratinocyte IFNk decreased baseline and UVA-induced expression of type I IFN and IFN response genes. In summary, we find a baseline deficit in type I IFN production in MF that is restored by psoralen plus UVA therapy and correlates with enhanced antitumor responses. This may explain why MF generally develops in sun-protected skin and suggests that drugs that increase epithelial type I IFNs, including topical MEK and EGFR inhibitors, may be effective therapies for MF.


Asunto(s)
Furocumarinas , Micosis Fungoide , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Linfocitos T CD8-positivos/patología , Micosis Fungoide/terapia , Micosis Fungoide/tratamiento farmacológico , Fototerapia , Expresión Génica , Furocumarinas/uso terapéutico
4.
Geroscience ; 44(3): 1871-1878, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35399134

RESUMEN

Although there is growing evidence that cellular senescence influences wound healing, a clear understanding of how senescence can be beneficial and/or detrimental to wound healing is unknown. Wound healing may also be influenced by the baseline tissue senescence, which is elevated in aging and chronic wounds, both of which have significant healing delays. To study the effects of skin senescence on wound healing, we developed an elevated skin senescence model based on the subcutaneous transfer of irradiated fibroblasts into young 8-week-old wild-type C57BL/6 male mice. This senescent cell transfer significantly increased skin senescence levels compared to control transfers of non-irradiated fibroblasts. There was an increased presence of SA-ß-Gal- and p21-positive senescent cells throughout the skin. Furthermore, the entire skin showed significantly elevated gene expression of senescence (p16, p21) and SASP markers (IL-6, MCP-1, MMP-3, MMP-9, and TGF-ß). Subsequent wound healing in the skin with elevated senescence was markedly delayed and had similar kinetics to naturally aged 2-year-old mice. After the wounds had healed, the skin developed persistently elevated senescence. Our results demonstrate that states of elevated skin senescence can delay wound healing and result in sustained senescence after healing. Therefore, the accumulation of senescent cells in aged skin or chronic wounds may be a driver of delayed healing and can be considered a potential target to improve healing.


Asunto(s)
Senescencia Celular , Piel , Animales , Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL , Cicatrización de Heridas/genética
5.
Cells ; 11(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203320

RESUMEN

Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).


Asunto(s)
Senescencia Celular , Epigénesis Genética , Senescencia Celular/genética , Cromatina/genética , Histonas/metabolismo
6.
Sci Immunol ; 7(70): eabn1889, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452256

RESUMEN

The circulating precursor cells that give rise to human resident memory T cells (TRM) are poorly characterized. We used an in vitro differentiation system and human skin-grafted mice to study TRM generation from circulating human memory T cell subsets. In vitro TRM differentiation was associated with functional changes, including enhanced IL-17A production and FOXP3 expression in CD4+ T cells and granzyme B production in CD8+ T cells, changes that mirrored the phenotype of T cells in healthy human skin. Effector memory T cells (TEM) had the highest conversion rate to TRM in vitro and in vivo, but central memory T cells (TCM) persisted longer in the circulation, entered the skin in larger numbers, and generated increased numbers of TRM. In summary, TCM are highly efficient precursors of human skin TRM, a feature that may underlie their known association with effective long-term immunity.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Animales , Humanos , Células T de Memoria , Ratones , Piel , Subgrupos de Linfocitos T
7.
JCI Insight ; 4(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30626755

RESUMEN

Psoralen plus UVA (PUVA) is an effective therapy for mycosis fungoides (MF), the skin-limited variant of cutaneous T cell lymphoma (CTCL). In low-burden patients, PUVA reduced or eradicated malignant T cells and induced clonal expansion of CD8+ T cells associated with malignant T cell depletion. High-burden patients appeared to clinically improve but large numbers of malignant T cells persisted in skin. Clinical improvement was linked to turnover of benign T cell clones but not to malignant T cell reduction. Benign T cells were associated with the Th2-recruiting chemokine CCL18 before therapy and with the Th1-recruiting chemokines CXCL9, CXCL10, and CXCL11 after therapy, suggesting a switch from Th2 to Th1. Inflammation was correlated with OX40L and CD40L gene expression; immunostaining localized these receptors to CCL18-expressing c-Kit+ dendritic cells that clustered together with CD40+OX40+ benign and CD40+CD40L+ malignant T cells, creating a proinflammatory synapse in skin. Our data suggest that visible inflammation in CTCL results from the recruitment and activation of benign T cells by c-Kit+OX40L+CD40L+ dendritic cells and that this activation may provide tumorigenic signals. Targeting c-Kit, OX40, and CD40 signaling may be novel therapeutic avenues for the treatment of MF.

8.
Free Radic Biol Med ; 107: 245-257, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27884703

RESUMEN

Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Ácidos Nucleicos/metabolismo , Estrés Oxidativo , Envejecimiento , Animales , Carcinogénesis , Inestabilidad Cromosómica , ADN/química , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA