Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2311661121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190515

RESUMEN

Coral reefs are in decline worldwide, making it increasingly important to promote coral recruitment in new or degraded habitat. Coral reef morphology-the structural form of reef substrate-affects many aspects of reef function, yet the effect of reef morphology on coral recruitment is not well understood. We used structure-from-motion photogrammetry and airborne remote sensing to measure reef morphology (rugosity, curvature, slope, and fractal dimension) across a broad continuum of spatial scales and evaluated the effect of morphology on coral recruitment in three broadcast-spawning genera. We also measured the effect of other environmental and biotic factors such as fish density, adult coral cover, hydrodynamic larval import, and depth on coral recruitment. All variables combined explained 72% of coral recruitment in the study region. Coarse reef rugosity and curvature mapped at ≥2 m spatial resolution-such as large colonies, knolls, and boulders-were positively correlated with coral recruitment, explaining 22% of variation in recruitment. Morphology mapped at finer scales (≤32 cm resolution) was not significant. Hydrodynamic larval import was also positively related to coral recruitment in Porites and Montipora spp., and grazer fish density was linked to significantly lower recruitment in all genera. In addition, grazer density, reef morphology, and hydrodynamic import had differential effects on coral genera, reflecting genus-specific life history traits, and model performance was lower in gonochoric species. Overall, coral reef morphology is a key indicator of recruitment potential that can be detected by remote sensing, allowing potential larval sinks to be identified and factored into restoration actions.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Fractales , Hidrodinámica , Larva
2.
Proc Biol Sci ; 289(1971): 20220071, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35291837

RESUMEN

Trait-based approaches are increasingly recognized as a tool for understanding ecosystem re-assembly and function under intensifying global change. Here we synthesize trait-based research globally (n = 865 studies) to examine the contexts in which traits may be used for global change prediction. We find that exponential growth in the field over the last decade remains dominated by descriptive studies of terrestrial plant morphology, highlighting significant opportunities to expand trait-based thinking across systems and taxa. Very few studies (less than 3%) focus on predicting ecological effects of global change, mostly in the past 5 years and via singular traits that mediate abiotic limits on species distribution. Beyond organism size (the most examined trait), we identify over 2500 other morphological, physiological, behavioural and life-history traits known to mediate environmental filters of species' range and abundance as candidates for future predictive global change work. Though uncommon, spatially explicit process models-which mechanistically link traits to changes in organism distributions and abundance-are among the most promising frameworks for holistic global change prediction at scales relevant for conservation decision-making. Further progress towards trait-based forecasting requires addressing persistent barriers including (1) matching scales of multivariate trait and environment data to focal processes disrupted by global change, and (2) propagating variation in trait and environmental parameters throughout process model functions using simulation.


Asunto(s)
Ecología , Ecosistema , Simulación por Computador , Fenotipo
3.
Reg Environ Change ; 21(2): 35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720738

RESUMEN

Small-scale fisheries are critically important for livelihoods around the world, particularly in tropical regions. However, climate variability and anthropogenic climate change may seriously impact small-scale fisheries by altering the abundance and distribution of target species. Social relationships between fishery users, such as fish traders, can determine how each individual responds and is affected by changes in fisheries. These informal cooperative and competitive relationships provide access, support, and incentives for fishing and affect the distribution of benefits. Yet, individuals' actions and impacts on individuals are often the primary focus of the economic analyses informing small-scale fisheries' formal management. This focus dismisses relevant social relationships. We argue that this leads to a disconnect between reality and its model representation used in formal management, which may reduce formal fisheries management's efficiency and efficacy and potentially trigger adverse consequences. Here, we examine this argument by comparing the predictions of a simple bioeconomic fishery model with those of a social-ecological model that incorporates the dynamics of cooperative relationships between fish traders. We illustrate model outcomes using an empirical case study in the Mexican Humboldt squid fishery. We find that (1) the social-ecological model with relationship dynamics substantially improves accuracy in predicting observed fishery variables to the simple bioeconomic model. (2) Income inequality outcomes are associated with changes in cooperative trade relationships. When environmental temperature is included in the model as a driver of species production dynamics, we find that climate-driven temperature variability drives a decline in catch that, in turn, reduce fishers' income. We observe an offset of this loss in income by including cooperative relationships between fish traders (oligopoly) in the model. These relationships break down following species distribution changes and result in an increase in prices fishers receive. Finally, (3) our social-ecological model simulations show that the current fishery development program, which seeks to increase fishers' income through an increase in domestic market demand, is supported by predictions from the simple bioeconomic model, may increase income inequality between fishers and traders. Our findings highlight the real and urgent need to re-think fisheries management models in the context of small-scale fisheries and climate change worldwide to encompass social relationship dynamics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s10113-021-01747-5).

4.
Proc Biol Sci ; 287(1922): 20192643, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126954

RESUMEN

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.


Asunto(s)
Conservación de los Recursos Naturales , Animales , Evolución Biológica , Tamaño Corporal , Extinción Biológica
5.
Proc Biol Sci ; 286(1896): 20182544, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963937

RESUMEN

Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago-20 anthropogenic and biophysical predictors over 620 survey sites-we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Aprendizaje Automático , Biofisica , Hawaii , Modelos Biológicos
6.
Conserv Biol ; 32(6): 1368-1379, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29797608

RESUMEN

Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can-at broad spatial scales and in combination with other environmental and socioeconomic information-point to priority areas for research and management.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , África Occidental , Regiones Antárticas , Región del Caribe , Humanos , Océano Índico , Madagascar , Océanos y Mares , Incertidumbre
7.
Nature ; 488(7413): 615-20, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22895186

RESUMEN

The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human­ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human­ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36­86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Monitoreo del Ambiente/métodos , Internacionalidad , Biología Marina/métodos , Oceanografía/métodos , Agua de Mar , Animales , Política Ambiental , Explotaciones Pesqueras , Geografía , Actividades Humanas/normas , Actividades Humanas/estadística & datos numéricos , Océanos y Mares , Recreación , Contaminación del Agua/análisis
8.
Glob Chang Biol ; 23(11): 4483-4496, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28447373

RESUMEN

Climate change and ocean acidification are altering marine ecosystems and, from a human perspective, creating both winners and losers. Human responses to these changes are complex, but may result in reduced government investments in regulation, resource management, monitoring and enforcement. Moreover, a lack of peoples' experience of climate change may drive some towards attributing the symptoms of climate change to more familiar causes such as management failure. Taken together, we anticipate that management could become weaker and less effective as climate change continues. Using diverse case studies, including the decline of coral reefs, coastal defences from flooding, shifting fish stocks and the emergence of new shipping opportunities in the Arctic, we argue that human interests are better served by increased investments in resource management. But greater government investment in management does not simply mean more of "business-as-usual." Management needs to become more flexible, better at anticipating and responding to surprise, and able to facilitate change where it is desirable. A range of technological, economic, communication and governance solutions exists to help transform management. While not all have been tested, judicious application of the most appropriate solutions should help humanity adapt to novel circumstances and seek opportunity where possible.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Animales , Arrecifes de Coral , Ecosistema , Peces , Humanos , Motivación , Océanos y Mares
9.
Bioscience ; 67(5): 418-428, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28533565

RESUMEN

Understanding and solving complex ocean conservation problems requires cooperation not just among scientific disciplines but also across sectors. A recently published survey that probed research priorities of marine scientists, when provided to ocean stakeholders, revealed some agreement on priorities but also illuminated key differences. Ocean acidification, cumulative impacts, bycatch effects, and restoration effectiveness were in the top 10 priorities for scientists and stakeholder groups. Significant priority differences were that scientists favored research questions about ocean acidification and marine protected areas; policymakers prioritized questions about habitat restoration, bycatch, and precaution; and fisheries sector resource users called for the inclusion of local ecological knowledge in policymaking. These results quantitatively demonstrate how different stakeholder groups approach ocean issues and highlight the need to incorporate other types of knowledge in the codesign of solutions-oriented research, which may facilitate cross-sectoral collaboration.

10.
Ecol Appl ; 27(8): 2313-2329, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28833890

RESUMEN

The ocean is a dynamic environment inhabited by a diverse array of highly migratory species, many of which are under direct exploitation in targeted fisheries. The timescales of variability in the marine realm coupled with the extreme mobility of ocean-wandering species such as tuna and billfish complicates fisheries management. Developing eco-informatics solutions that allow for near real-time prediction of the distributions of highly mobile marine species is an important step towards the maturation of dynamic ocean management and ecological forecasting. Using 25 yr (1990-2014) of NOAA fisheries' observer data from the California drift gillnet fishery, we model relative probability of occurrence (presence-absence) and catchability (total catch per gillnet set) of broadbill swordfish Xiphias gladius in the California Current System. Using freely available environmental data sets and open source software, we explore the physical drivers of regional swordfish distribution. Comparing models built upon remotely sensed data sets with those built upon a data-assimilative configuration of the Regional Ocean Modelling System (ROMS), we explore trade-offs in model construction, and address how physical data can affect predictive performance and operational capacity. Swordfish catchability was found to be highest in deeper waters (>1,500 m) with surface temperatures in the 14-20°C range, isothermal layer depth (ILD) of 20-40 m, positive sea surface height (SSH) anomalies, and during the new moon (<20% lunar illumination). We observed a greater influence of mesoscale variability (SSH, wind speed, isothermal layer depth, eddy kinetic energy) in driving swordfish catchability (total catch) than was evident in predicting the relative probability of presence (presence-absence), confirming the utility of generating spatiotemporally dynamic predictions. Data-assimilative ROMS circumvent the limitations of satellite remote sensing in providing physical data fields for species distribution models (e.g., cloud cover, variable resolution, subsurface data), and facilitate broad-scale prediction of dynamic species distributions in near real time.


Asunto(s)
Explotaciones Pesqueras , Peces , Tecnología de Sensores Remotos/métodos , Animales , California , Biología Computacional , Ecología , Modelos Biológicos , Océano Pacífico
11.
Proc Natl Acad Sci U S A ; 111(14): 5271-6, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24639512

RESUMEN

Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce--in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers--and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority.


Asunto(s)
Aves , Mamíferos , Biología Marina , Tortugas , Animales , Biodiversidad
12.
Conserv Biol ; 28(4): 902-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24779578

RESUMEN

Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well-established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation-oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social-ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision-support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem-based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Océanos y Mares , Biodiversidad , Conservación de los Recursos Naturales/tendencias , Recolección de Datos , Técnicas de Apoyo para la Decisión , Humanos
13.
Science ; 384(6697): 734-737, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38753785

RESUMEN

Comprehensive spatial planning in international waters is key to achieving ocean sustainability.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Océanos y Mares
14.
Sci Data ; 11(1): 2, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216562

RESUMEN

Trait-based frameworks are increasingly used for predicting how ecological communities respond to ongoing global change. As species range shifts result in novel encounters between predators and prey, identifying prey 'guilds', based on a suite of shared traits, can distill complex species interactions, and aid in predicting food web dynamics. To support advances in trait-based research in open-ocean systems, we present the Pelagic Species Trait Database, an extensive resource documenting functional traits of 529 pelagic fish and invertebrate species in a single, open-source repository. We synthesized literature sources and online resources, conducted morphometric analysis of species images, as well as laboratory analyses of trawl-captured specimens to collate traits describing 1) habitat use and behavior, 2) morphology, 3) nutritional quality, and 4) population status information. Species in the dataset primarily inhabit the California Current system and broader NE Pacific Ocean, but also includes pelagic species known to be consumed by top ocean predators from other ocean basins. The aim of this dataset is to enhance the use of trait-based approaches in marine ecosystems and for predator populations worldwide.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Peces , Biología Marina , Océano Pacífico
15.
Nat Ecol Evol ; 6(11): 1617-1625, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280783

RESUMEN

Animal migration plays a central role in many ecological and evolutionary processes, yet migratory populations worldwide are increasingly threatened. Adjusting migration timing to match ecosystem phenology is key to survival in dynamic and changing ecosystems, especially in an era of human-induced rapid environmental change. Social cues are increasingly recognized as major components of migratory behaviour, yet a comprehensive understanding of how social cues influence the timing of animal migrations remains elusive. Here, we introduce a framework for assessing the role that social cues, ranging from explicit (for example, active cueing) to implicit (for example, competition), play in animals' temporal migration decisions across a range of scales. By applying this theoretical lens to a systematic review of published literature, we show that a broad range of social cues frequently mediate migration timing at a range of temporal scales and across highly diverse migratory taxa. We further highlight that while rarely documented, several social cue mechanisms (for example, social learning and density dependency) play important adaptive roles in matching migration timing with ecosystem dynamics. Thus, social cues play a fundamental role in migration timing, with potentially widespread ecological consequences and implications for the conservation of migratory species. Furthermore, our analysis establishes a theoretical basis on which to evaluate future findings on the role of both conspecific and interspecific social cues in this intersection of behavioural ecology and global change biology.


Asunto(s)
Migración Animal , Ecosistema , Animales , Humanos , Señales (Psicología) , Evolución Biológica
16.
Proc Biol Sci ; 278(1722): 3191-200, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21429921

RESUMEN

Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.


Asunto(s)
Aves/fisiología , Ecosistema , Explotaciones Pesqueras/estadística & datos numéricos , Modelos Biológicos , Animales , Simulación por Computador , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/métodos , Mortalidad , Océano Pacífico , Dinámica Poblacional , Especificidad de la Especie , Telemetría
17.
Ecol Appl ; 21(1): 263-73, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21516903

RESUMEN

Understanding population status for endangered species is critical to developing and evaluating recovery plans mandated by the Endangered Species Act. For sea turtles, changes in abundance are difficult to detect because most life stages occur in the water. Currently, nest counts are the most reliable way of assessing trends. We determined the rate of growth for leatherback turtle (Dermochelys coriacea) nest numbers in Florida (USA) using a multilevel Poisson regression. We modeled nest counts from 68 beaches over 30 years and, using beach-level covariates (including latitude), we allowed for partial pooling of information between neighboring beaches. This modeling approach is ideal for nest count data because it recognizes the hierarchical structure of the data while incorporating variables related to survey effort. Nesting has increased at all 68 beaches in Florida, with trends ranging from 3.1% to 16.3% per year. Overall, across the state, the number of nests has been increasing by 10.2% per year since 1979. Despite being a small population (probably < 1000 individuals), this nesting population may help achieve objectives in the federal recovery plan. This exponential growth rate mirrors trends observed for other Atlantic populations and may be driven partially by improved protection of nesting beaches. However, nesting is increasing even where beach protection has not been enhanced. Climate variability and associated marine food web dynamics, which could enhance productivity and reduce predators, may be driving this trend.


Asunto(s)
Comportamiento de Nidificación , Tortugas/crecimiento & desarrollo , Animales , Florida , Dinámica Poblacional , Tortugas/fisiología
18.
Conserv Biol ; 24(6): 1586-95, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20575987

RESUMEN

Little is known about how specific anthropogenic hazards affect the biology of organisms. Quantifying the effect of regional hazards is particularly challenging for species such as sea turtles because they are migratory, difficult to study, long lived, and face multiple anthropogenic threats. Expert elicitation, a technique used to synthesize opinions of experts while assessing uncertainty around those views, has been in use for several decades in the social science and risk assessment sectors. We conducted an internet-based survey to quantify expert opinion on the relative magnitude of anthropogenic hazards to sea turtle populations at the regional level. Fisheries bycatch and coastal development were most often ranked as the top hazards to sea turtle species in a geographic region. Nest predation and direct take followed as the second and third greatest threats, respectively. Survey results suggest most experts believe sea turtles are threatened by multiple factors, including substantial at-sea threats such as fisheries bycatch. Resources invested by the sea turtle community, however, appear biased toward terrestrial-based impacts. Results from the survey are useful for conservation planning because they provide estimates of relative impacts of hazards on sea turtles and a measure of consensus on the magnitude of those impacts among researchers and practitioners. Our survey results also revealed patterns of expert bias, which we controlled for in our analysis. Respondents with no experience with respect to a sea turtle species tended to rank hazards affecting that sea turtle species higher than respondents with experience. A more-striking pattern was with hazard-based expertise: the more experience a respondent had with a specific hazard, the higher the respondent scored the impact of that hazard on sea turtle populations. Bias-controlled expert opinion surveys focused on threatened species and their hazards can help guide and expedite species recovery plans.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Testimonio de Experto , Medición de Riesgo , Tortugas , Animales , Recolección de Datos/métodos , Variaciones Dependientes del Observador , Incertidumbre
19.
Conserv Biol ; 23(1): 24-30, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18950469

RESUMEN

Over the last decade, 2 major U.S. commissions on ocean policy and a wide range of independent sources have argued that ocean ecosystems are in a period of crisis and that current policies are inadequate to prevent further ecological damage. These sources have advocated ecosystem-based management as an approach to address conservation issues in the oceans, but managers remain uncertain as to how to implement ecosystem-based approaches in the real world. We argue that the philosophies of Edward F. Ricketts, a mid-20th-century marine ecologist, offer a framework and clear guidance for taking an ecosystem approach to marine conservation. Ricketts' philosophies, which were grounded in basic observations of natural history, espoused building a holistic picture of the natural world, including the influence of humans, through repeated observation. This approach, when applied to conservation, grounds management in what is observable in nature, encourages early action in the face of uncertainty, and supports an adaptive approach to management as new information becomes available. Ricketts' philosophy of "breaking through," which focuses on getting beyond crisis and conflict through honest debate of different parties' needs (rather than forcing compromise of differing positions), emphasizes the social dimension of natural resource management. New observational technologies, long-term ecological data sets, and especially advances in the social sciences made available since Ricketts' time greatly enhance the utility of Ricketts' philosophy of marine conservation.


Asunto(s)
Consenso , Conservación de los Recursos Naturales/métodos , Ecosistema , Historia Natural/métodos , Observación/métodos , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA