Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Mol Cell Cardiol ; 126: 129-139, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500377

RESUMEN

Cardiac failure is a common complication in cancer survivors treated with anthracyclines. Here we followed up cardiac function and excitation-contraction (EC) coupling in an in vivo doxorubicin (Dox) treated mice model (iv, total dose of 10 mg/Kg divided once every three days). Cardiac function was evaluated by echocardiography at 2, 6 and 15 weeks after the last injection. While normal at 2 and 6 weeks, ejection fraction was significantly reduced at 15 weeks. In order to evaluate the underlying mechanisms, we measured [Ca2+]i transients by confocal microscopy and action potentials (AP) by patch-clamp technique in cardiomyocytes isolated at these times. Three phases were observed: 1/depression and slowing of the [Ca2+]i transients at 2 weeks after treatment, with occurrence of proarrhythmogenic Ca2+ waves, 2/compensatory state at 6 weeks, and 3/depression on [Ca2+]i transients and cell contraction at 15 weeks, concomitant with in-vivo defects. These [Ca2+]i transient alterations were observed without cellular hypertrophy or AP prolongation and mirrored the sarcoplasmic reticulum (SR) Ca2+ load variations. At the molecular level, this was associated with a decrease in the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) expression and enhanced RyR2 phosphorylation at the protein kinase A (PKA, pS2808) site (2 and 15 weeks). RyR2 phosphorylation at the Ca2+/calmodulin dependent protein kinase II (CaMKII, pS2814) site was enhanced only at 2 weeks, coinciding with the higher incidence of proarrhythmogenic Ca2+ waves. Our study highlighted, for the first time, the progression of Dox treatment-induced alterations in Ca2+ handling and identified key components of the underlying Dox cardiotoxicity. These findings should be helpful to understand the early-, intermediate-, and late- cardiotoxicity already recorded in clinic in order to prevent or treat at the subclinical level.


Asunto(s)
Cardiotoxicidad/fisiopatología , Doxorrubicina/efectos adversos , Acoplamiento Excitación-Contracción , Potenciales de Acción , Animales , Calcio/metabolismo , Señalización del Calcio , Pruebas de Función Cardíaca , Masculino , Ratones Endogámicos C57BL , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo
2.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25369805

RESUMEN

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Asunto(s)
Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/prevención & control , Proteínas Activadoras de GTPasa/biosíntesis , Genes ras/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/fisiología
3.
Elife ; 122023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551870

RESUMEN

Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Ratones , Humanos , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cardiotoxicidad , Cardiomiopatía Dilatada/patología , Doxorrubicina/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Noqueados , Apoptosis
4.
J Mol Cell Cardiol ; 51(5): 665-73, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21810427

RESUMEN

Protein kinase C (PKC) is a family of 10 serine/threonine kinases divided into 3 subfamilies, classical, novel and atypical classes. Two PKC isozymes of the novel group, PKCε and PKCδ, have different and sometimes opposite effects. PKCε stimulates cell growth and differentiation while PKCδ is apoptotic. In the heart, they are among the most expressed PKC isozymes and they are opposed in the preconditioning process with a positive role of PKCε and an inhibiting role of PKCδ. The goal of this review is to analyze the structural differences of these 2 enzymes that may explain their different behaviors and properties.


Asunto(s)
Hipertrofia Ventricular Izquierda/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Proteína Quinasa C-delta , Proteína Quinasa C-epsilon , Transducción de Señal , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Cobayas , Humanos , Hipertrofia Ventricular Izquierda/patología , Isoenzimas/química , Isoenzimas/metabolismo , Ratones , Isquemia Miocárdica/patología , Miocardio/patología , Especificidad de Órganos , Unión Proteica , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/química , Proteína Quinasa C-epsilon/metabolismo , Estructura Terciaria de Proteína , Conejos , Ratas , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
7.
Pflugers Arch ; 459(4): 535-46, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19855995

RESUMEN

Exchange proteins directly activated by cyclic AMP (Epac) were discovered 10 years ago as new sensors for the second messenger cyclic AMP (cAMP). Epac family, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2 and function independently of protein kinase A. Given the importance of cAMP in the cardiovascular system, numerous molecular and cellular studies using specific Epac agonists have analyzed the role and the regulation of Epac proteins in cardiovascular physiology and pathophysiology. The specific functions of Epac proteins may depend upon their microcellular environments as well as their expression and localization. This review discusses recent data showing the involvement of Epac in vascular cell migration, endothelial permeability, and inflammation through specific signaling pathways. In addition, we present evidence that Epac regulates the activity of various cellular compartments of the cardiac myocyte and influences calcium handling and excitation-contraction coupling. The potential role of Epac in cardiovascular disorders such as cardiac hypertrophy and remodeling is also discussed.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Fenómenos Fisiológicos Cardiovasculares , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , Comunicación Celular/fisiología , Movimiento Celular/fisiología , AMP Cíclico/análogos & derivados , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibrosis/patología , Sistema de Conducción Cardíaco/fisiología , Hipertrofia/patología , Músculo Liso Vascular/citología , Miocardio/metabolismo , Miocardio/patología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/fisiología
8.
Pflugers Arch ; 460(4): 731-41, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20585956

RESUMEN

It has been recently shown that beta-adrenergic receptors are able to activate phospholipase C via the cyclic adenosine monophosphate-binding protein Epac. This new interconnection may participate in isoproterenol (Iso)-induced preconditioning. We evaluated here whether Epac could induce PKCepsilon activation and could play a role in ischemic preconditioning through the phosphorylation of connexin43 (Cx43) and changes in gap junctional intercellular communication (GJIC). In cultured rat neonatal cardiomyocytes, we showed that in response to Iso and 8-CPT, a specific Epac activator, PKCepsilon content was increased in particulate fractions of cell lysates independently of protein kinase A (PKA). This was associated with an increased Cx43 phosphorylation. Both Iso and 8-CPT induced an increase in GJIC that was blocked by the PKC inhibitor bisindolylmaleimide. Interestingly, inhibition of PKA partly suppressed both Iso-induced increases in Cx43 phosphorylation and in GJIC. The same PKCepsilon-dependent Cx43 phosphorylation by beta-adrenergic stimulation via Epac was found in adult rat hearts. However, in contrast with Iso that induced a preconditioning effect, perfusion of isolated hearts with 8-CPT prior to ischemia failed to improve the post-ischemia functional recovery. In conclusion, Epac stimulation induces PKCepsilon activation and Cx43 phosphorylation with an increase in GJIC, but Epac activation does not induce preconditioning to ischemia in contrast with beta-adrenergic stimulation.


Asunto(s)
Conexina 43/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Precondicionamiento Isquémico Miocárdico , Miocitos Cardíacos/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Western Blotting , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Factores de Intercambio de Guanina Nucleótido/efectos de los fármacos , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosforilación , Proteína Quinasa C-epsilon/metabolismo , Ratas , Teofilina/análogos & derivados , Teofilina/farmacología
9.
Cardiovasc Res ; 71(1): 97-107, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16682016

RESUMEN

OBJECTIVES: Myocardial stretch activates a number of interconnected pathways including the protein kinase C (PKC) pathway that in turn activates mitogen activated protein kinases (MAPK), leading to gene expression stimulation and ventricular hypertrophy. A role of calcineurin has also been shown during hypertrophy. The goal of our study was to look for a possible interconnection between PKC and calcineurin in myocardial stretch. METHODS: Neonatal rat cardiomyocytes were cultured for 5 days and a 15% stretch was applied. Expression of MAPK and PKC-epsilon was evaluated by Western blot analysis. The specific role of PKC-epsilon was evaluated by transfection of cardiomyocytes with a specific inhibitor peptide. Calcineurin and PKC-epsilon complex formation and co-localization were evaluated by co-immunoprecipitation and by immunolocalization. RESULTS: The PKC isoform involved in stretch-induced ERK and JNK activations was PKC-epsilon. We show here that calcineurin is also found to be involved in the stretch response and that calcineurin and PKC-epsilon co-operate at 2 levels during stretch. First, stretch-induced translocation of PKC-epsilon from the cytosolic to the membrane fraction was inhibited by calcineurin inhibitors, indicating that calcineurin was necessary for PKC-epsilon activation induced by stretch. A second level of interaction was the formation of a calcineurin-PKC-epsilon complex, which increased during stretch. Immunofluorescent studies indicated that, after stretch, calcineurin and PKC-epsilon were co-localized at the level of the perinuclear membrane. These results may have a major relevance in vivo since we also found similar PKC-epsilon-calcineurin complexes in the phase of thoracic aortic stenosis in rats during which heart failure develops. CONCLUSION: Calcineurin appears to be necessary for stretch-induced PKC-epsilon activation after which the phosphatase and the kinase are co-localized in a complex at the level of the perinuclear membrane where they may finely regulate the phosphorylation of their target proteins.


Asunto(s)
Calcineurina/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Transducción de Señal/fisiología , Animales , Estenosis de la Válvula Aórtica/metabolismo , Transporte Biológico Activo , Western Blotting/métodos , Cardiotónicos/farmacología , Membrana Celular/enzimología , Tamaño de la Célula , Células Cultivadas , Citosol/enzimología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Ventrículos Cardíacos , Inmunoprecipitación , Isoproterenol/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Microscopía Fluorescente , Fosforilación , Ratas , Estrés Mecánico
10.
JACC Cardiovasc Imaging ; 9(9): 1023-1030, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27236522

RESUMEN

OBJECTIVES: The aim of this study was to investigate the potential of shear wave imaging (SWI), a novel ultrasound-based technique, to noninvasively quantify passive diastolic myocardial stiffness in an ovine model of ischemic cardiomyopathy. BACKGROUND: Evaluation of diastolic left ventricular function is critical for evaluation of heart failure and ischemic cardiomyopathy. Myocardial stiffness is known to be an important property for the evaluation of the diastolic myocardial function, but this parameter cannot be measured noninvasively by existing techniques. METHODS: SWI was performed in vivo in open-chest procedures in 10 sheep. Ligation of a diagonal of the left anterior descending coronary artery was performed for 15 min (stunned group, n = 5) and 2 h (infarcted group, n = 5). Each procedure was followed by a 40-min reperfusion period. Diastolic myocardial stiffness was measured at rest, during ischemia, and after reperfusion by using noninvasive shear wave imaging. Simultaneously, end-diastolic left ventricular pressure and segmental strain were measured with a pressure catheter and sonomicrometers during transient vena caval occlusions to obtain gold standard evaluation of myocardial stiffness using end-diastolic strain-stress relationship (EDSSR). RESULTS: In both groups, the end-systolic circumferential strain was drastically reduced during ischemia (from 14.2 ± 1.2% to 1.3 ± 1.6% in the infarcted group and from 13.5 ± 3.0% to 1.9 ± 1.8% in the stunned group; p <0.01). SWI diastolic stiffness increased after 2 h of ischemia from 1.7 ± 0.4 to 6.2 ± 2.2 kPa (p < 0.05) and even more after reperfusion (12.1 ± 4.2 kPa; p < 0.01). Diastolic myocardial stiffening was confirmed by the exponential constant coefficient of the EDSSR, which increased from 8.8 ± 2.3 to 25.7 ± 9.5 (p < 0.01). In contrast, SWI diastolic stiffness was unchanged in the stunned group (2.3 ± 0.4 kPa vs 1.8 ± 0.3 kPa, p = NS) which was confirmed also by the exponential constant of EDSSR (9.7 ± 3.1 vs 10.2 ± 2.3, p = NS). CONCLUSIONS: Noninvasive SWI evaluation of diastolic myocardial stiffness can differentiate between stiff, noncompliant infarcted wall and softer wall containing stunned myocardium.


Asunto(s)
Cardiomiopatías/diagnóstico por imagen , Infarto del Miocardio/diagnóstico por imagen , Aturdimiento Miocárdico/diagnóstico por imagen , Ultrasonografía/métodos , Función Ventricular Izquierda , Animales , Fenómenos Biomecánicos , Cardiomiopatías/fisiopatología , Diástole , Modelos Animales de Enfermedad , Módulo de Elasticidad , Infarto del Miocardio/fisiopatología , Aturdimiento Miocárdico/fisiopatología , Valor Predictivo de las Pruebas , Oveja Doméstica , Factores de Tiempo , Presión Ventricular
11.
Circulation ; 109(1): 114-9, 2004 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-14662711

RESUMEN

BACKGROUND: This study examined the effects of chronic bradykinin infusion on hemodynamics and myocardial and endothelial functions during the development of heart failure. METHODS AND RESULTS: Sixteen instrumented dogs were randomized to receive through the left atria either vehicle or bradykinin (1 microg/min) during ventricular pacing (250 bpm, 5 weeks). Hemodynamic and left ventricular (LV) parameters and the vasodilator responses to intravenous acetylcholine (0.3 to 3 microg/kg) and nitroglycerin (1 to 10 microg/kg) were examined in the control and after 3 and 5 weeks of pacing. The expression of endothelial NOS in femoral, carotid, and renal arteries was determined by Western blot analysis. After 3 weeks of pacing, changes in LV diastolic and systolic parameters were significantly lower in bradykinin-treated than vehicle-treated dogs (LV end-diastolic pressure, +10+/-3 versus +19+/-2 mm Hg; time constant of LV isovolumic relaxation, +11+/-2 versus +17+/-1 ms; LV wall thickening, -33+/-18% versus -75+/-9%; and cardiac output, -16+/-6% versus -32+/-6%; all P<0.05). Compared with vehicle-treated dogs, bradykinin-treated dogs had a reduced rightward shift of the diastolic LV pressure-diameter relation and a reduced diastolic LV wall stress. Similar trends were observed after 5 weeks. The vasodilator response to nitroglycerin was preserved in both groups. The response to acetylcholine was blunted in vehicle-treated but preserved in bradykinin-treated dogs. Vascular endothelial NOS expression decreased in vehicle-treated but was preserved in bradykinin-treated dogs. CONCLUSIONS: In conscious dogs, chronic bradykinin infusion delays the heart failure progression by preserving LV diastolic and systolic functions and by preserving vascular endothelial function.


Asunto(s)
Bradiquinina/farmacología , Endotelio Vascular/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Vasodilatación/efectos de los fármacos , Acetilcolina/farmacología , Animales , Western Blotting , Bradiquinina/uso terapéutico , Gasto Cardíaco/efectos de los fármacos , Estimulación Cardíaca Artificial , Perros , Endotelio Vascular/enzimología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Contracción Miocárdica/efectos de los fármacos , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa de Tipo III , Nitroglicerina/farmacología , Presión Ventricular/efectos de los fármacos
12.
FASEB J ; 16(7): 653-60, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11978729

RESUMEN

To understand the role of creatine kinase (CK) in cardiac excitation-contraction coupling, CK-deficient mice (CK-/-) were studied in vitro and in vivo. In skinned fibers, the kinetics of caffeine-induced release of Ca2+ was markedly slowed in CK-/- mice with a partial restoration when glycolytic substrates were added. These abnormalities were almost compensated for at the cellular level: the responses of Ca2+ transient and cell shortening to an increased pacing rate from 1 Hz to 4 Hz were normal with a normal post-rest potentiation of shortening. However, the post-rest potentiation of the Ca2+ transient was absent and the cellular contractile response to isoprenaline was decreased in CK-/- mice. In vivo, echocardiographically determined cardiac function was normal at rest but the response to isoprenaline was blunted in CK-/- mice. Previously described compensatory pathways (glycolytic pathway and closer sarcoplasmic reticulum-mitochondria interactions) allow a quasi-normal SR function in isolated cells and a normal basal in vivo ventricular function, but are not sufficient to cope with a large and rapid increase in energy demand produced by beta-adrenergic stimulation. This shows the specific role of CK in excitation-contraction coupling in cardiac muscle that cannot be compensated for by other pathways.


Asunto(s)
Creatina Quinasa/genética , Creatina Quinasa/fisiología , Contracción Miocárdica , Miocardio/enzimología , Agonistas Adrenérgicos beta/farmacología , Animales , Cafeína/farmacología , Calcio/metabolismo , Células Cultivadas , Técnicas de Cultivo , Corazón/efectos de los fármacos , Corazón/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/farmacología , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocardio/citología , Miocardio/metabolismo , Ratas , Ratas Wistar , Estimulación Química , Función Ventricular/efectos de los fármacos
13.
Fundam Clin Pharmacol ; 19(3): 331-9, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15910657

RESUMEN

To determine age-related changes in the cardiac effect of alpha1-adrenergic stimulation, both cardiomyocyte Ca2+-transient and cardiac protein kinase C (PKC) activity were measured in 3-month- (3MO) and 24-month- (24MO) old Wistar rats. Ca2+ transients obtained under 1 Hz pacing by microfluorimetry of cardiomyocyte loaded with indo-1 (405/480 nm fluorescence ratio) were compared in control conditions (Kreb's solution alone) and after alpha1-adrenergic stimulation (phenylephrine or cirazoline, an alpha1-specific agonist). PKC activity and PKC translocation index (particulate/total activity) were also assayed before and after alpha1-adrenergic stimulation. In 3MO, cirazoline induced a significant increase in Ca2+ transient for a 10(-9) M concentration which returned to control values for larger concentrations. In contrast, in 24MO, we observed a constant negative effect of cirazoline on the Ca2+ transient with a significant decrease at 10(-6) M compared with both baseline and Kreb's solution. Preliminary experiments showed that, in a dose-response curve to phenylephrine, the response of Ca2+ transient was maximal at 10(-7) M. This concentration induced a significant increase in Ca2+ transient in 3MO and a significant decrease in 24MO. The same concentration was chosen to perform PKC activity measurements under alpha1-adrenergic stimulation. In the basal state, PKC particulate activity was higher in 24MO than that in 3MO but was not different in cytosolic fractions; so that the translocation index was higher in 24MO (P < 0.01). After phenylephrine, a translocation of PKC toward the particulate fraction was observed in 3MO but not in 24MO. In conclusion, cardiac alpha1-adrenoceptor response was found to be impaired in aged hearts. The negative effect of alpha1-adrenergic stimulation on Ca2+ transient in cardiomyocytes obtained from old rats can be related to an absence of alpha1-adrenergic-induced PKC translocation.


Asunto(s)
Envejecimiento/fisiología , Corazón/fisiología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Agonistas alfa-Adrenérgicos/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Separación Celular , Estimulación Eléctrica , Corazón/efectos de los fármacos , Imidazoles/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Fenilefrina/farmacología , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar
14.
Br J Pharmacol ; 136(2): 264-70, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12010775

RESUMEN

1. This study examined whether NO is involved in the in-vivo coronary vasodilator effects of amlodipine (a calcium channel blocker) and whether heart failure (HF) alters the coronary responses to amlodipine. 2. Nine conscious dogs were chronically instrumented to measure circumflex coronary blood flow (CBF) and coronary diameter (CD). Drugs were administered directly into the circumflex artery through an indwelling catheter to avoid systemic changes. HF was induced by right ventricular pacing (240 b.p.m., 3 weeks). 3. Compared with control (C), in HF, coronary responses to acetylcholine (1 - 10 ng kg(-1)) were reduced while responses to nitroglycerin (0.1 - 0.5 microg kg(-1)) were unchanged. In C, amlodipine (30 - 150 microg kg(-1)), increased dose-dependently CBF and CD. After LNA (a NO synthase inhibitor, 2 mg kg(-1)), amlodipine produced less increases in CBF and CD (+121+/-26 ml min(-1) and +76+/-35 microm versus +196+/-40 ml min(-1) and +153+/-39 microm respectively for 150 microg kg(-1) amlodipine alone, both P<0.05). In HF, the coronary responses to amlodipine were reduced (150 microg kg(-1) of amlodipine increased CBF and CD +121+/-23 ml min(-1) and +77+/-21 microm respectively, both P<0.05). After LNA, the CBF responses to amlodipine tended to be reduced (+94+/-19 ml min(-1) at 150 microg kg(-1)) but CD responses were significantly reduced (+41+/-16 microm, P<0.05). The supplementation with L-arginine did not enhance the coronary responses to amlodipine. 4. These results indicate that, in conscious dogs, NO participates in the coronary responses to amlodipine and in HF, the coronary responses to amlodipine are reduced, which is related to a reduced NO production.


Asunto(s)
Amlodipino/farmacología , Estimulación Cardíaca Artificial/efectos adversos , Vasos Coronarios/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Óxido Nítrico/fisiología , Vasodilatadores/farmacología , Animales , Circulación Coronaria/efectos de los fármacos , Circulación Coronaria/fisiología , Vasos Coronarios/fisiología , Perros , Relación Dosis-Respuesta a Droga , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Óxido Nítrico/biosíntesis , Vigilia/fisiología
15.
Fundam Clin Pharmacol ; 16(1): 31-7, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11903510

RESUMEN

Chelerythrine, a potent inhibitor of protein kinase C (PKC), was evaluated for its effect on inositol phosphate (IP) metabolism in newborn rat cardiomyocytes in culture. In a first step, we evaluated the effect of chelerythrine on IP accumulation in basal conditions. For a 10(-4) M dose, 5-phosphatase activity (which dephosphorylates IP3 into IP2) was completely blocked and we observed a large increase in IP accumulation limited to IP2 without any increase in IP3, strongly suggesting that chelerythrine at this dose modifies IP metabolism. At a lower dose (10(-5) M) of chelerythrine, which did not modify IP accumulation and 5-phosphatase activity in basal conditions, the response to angiotensin II stimulation was completely abolished by the addition of chelerythrine. We conclude thus that chelerythrine, even at 10(-5) M, interacts markedly with IP metabolism, and caution should be exerted when interpreting the results obtained with this drug, which is still currently used at this dose.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfatos de Inositol/metabolismo , Miocardio/metabolismo , Fenantridinas/farmacología , Alcaloides , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Benzofenantridinas , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inositol Polifosfato 5-Fosfatasas , Miocardio/citología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Wistar , Fosfolipasas de Tipo C/metabolismo , Vasoconstrictores/farmacología
16.
J Am Coll Cardiol ; 58(1): 65-72, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21700091

RESUMEN

OBJECTIVES: The goal of this study was to assess whether myocardial stiffness could be measured by shear wave imaging (SWI) and whether myocardial stiffness accurately quantified myocardial function. BACKGROUND: SWI is a novel ultrasound-based technique for quantitative, local, and noninvasive mapping of soft tissue elastic properties. METHODS: SWI was performed in Langendorff perfused isolated rat hearts (n = 6). Shear wave was generated and imaged in the left ventricular myocardium using a conventional ultrasonic probe connected to an ultrafast scanner (12,000 frames/s). The local myocardial stiffness was derived from shear wave velocity every 7.5 ms during 1 single cardiac cycle. RESULTS: The average myocardial stiffness was 8.6 ± 0.7 kPa in systole and 1.7 ± 0.8 kPa in diastole. Myocardial stiffness was compared with isovolumic systolic pressure at rest and during administration of isoproterenol (10(-9), 10(-8), and 10(-7) mol/l, 5 min each). Systolic myocardial stiffness increased strongly up to 23.4 ± 3.4 kPa. Myocardial stiffness correlated strongly with isovolumic systolic pressure (r(2) = [0.94; 0.98], p < 0.0001). CONCLUSIONS: Myocardial stiffness can be measured in real time over the cardiac cycle using SWI, which allows quantification of stiffness variation between systole and diastole. Systolic myocardial stiffness provides a noninvasive index of myocardial contractility.


Asunto(s)
Contracción Miocárdica , Animales , Calcio/metabolismo , Ecocardiografía/métodos , Elasticidad , Diagnóstico por Imagen de Elasticidad , Corazón/fisiología , Ventrículos Cardíacos/patología , Humanos , Isoproterenol/farmacología , Miocardio/metabolismo , Presión , Ratas , Receptores Adrenérgicos beta/metabolismo , Análisis de Regresión , Estrés Mecánico , Sístole , Factores de Tiempo
17.
Cell Signal ; 23(8): 1257-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21402149

RESUMEN

Epac proteins respond to the second messenger cyclic AMP (cAMP) and are activated by Gs coupled receptors. They act as specific guanine nucleotide exchange factors (GEFs) for the small G proteins, Rap1 and Rap2 of the Ras family. A plethora of studies using 8-pCPT-2'-O-Me-cAMP, an Epac agonist, has revealed the importance of these multi-domain proteins in the control of key cellular functions such as cell division, migration, growth and secretion. Epac and protein kinase A (PKA) may act independently but are often associated with the same biological process, in which they fulfill either synergistic or opposite effects. In addition, compelling evidence is now accumulating about the formation of molecular complexes in distinct cellular compartments that influence Epac signaling and cellular function. Epac is spatially and temporally regulated by scaffold protein and its effectors are interconnected with other signaling pathways. Pathophysiological changes in Epac signaling may underlie certain diseases.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rap/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Receptores Acoplados a Proteínas G/metabolismo
18.
Eur J Heart Fail ; 12(11): 1171-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20870672

RESUMEN

AIMS: This study aimed to determine the role of the renin-angiotensin system (RAS) in high-salt (HS) diet-induced left ventricular hypertrophy (LVH). METHODS AND RESULTS: Swiss mice were subjected to regular salt (RS) diet (0.6% NaCl), HS diet (4% NaCl), and HS plus irbesartan (50 mg/kg/day) or ramipril (1 mg/kg/day). After 8 weeks, arterial pressure was similar in all groups and similar to baseline, whereas left ventricle/body weight ratio was higher in HS mice than in RS mice (P < 0.005). There were also significant increases in collagen density, angiotensin-converting enzyme activity, angiotensin II type 1 receptor (AT1 receptor) density, and extracellular signal-regulated kinase (ERK1/2) phosphorylation in the left ventricle. Interestingly, increases in wall thickness and ERK1 phosphorylation were more marked in the septum than in the rest of the left ventricle. Irbesartan or ramipril treatment prevented LVH and the increase in ERK phosphorylation and reduced collagen content and AT1 up-regulation but up-regulated AT2 receptors. CONCLUSION: In normal mice, HS diet induces septum-predominant LVH and fibrosis through activation of the cardiac RAS-ERK pathway, which can be blocked by irbesartan or ramipril, indicating a key role of the cardiac RAS in HS diet-induced LVH.


Asunto(s)
Hipertrofia Ventricular Izquierda/fisiopatología , Sistema Renina-Angiotensina/fisiología , Sodio en la Dieta/administración & dosificación , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Autorradiografía , Compuestos de Bifenilo/farmacología , Western Blotting , Femenino , Fibrosis , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Inmunohistoquímica , Irbesartán , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/farmacología , Fosforilación , Ramipril/farmacología , Renina/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Tetrazoles/farmacología , Ultrasonografía , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Cell Signal ; 22(10): 1459-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20576488

RESUMEN

Epac (Exchange protein directly activated by cAMP) is a sensor for cAMP and represents a novel mechanism for governing cAMP signalling. Epac is a guanine nucleotide exchange factor (GEF) for the Ras family of small GTPases, Rap. Previous studies demonstrated that, in response to a prolonged beta-adrenergic stimulation Epac induced cardiac myocyte hypertrophy. The aim of our study was to further characterize Epac downstream effectors involved in cardiac myocyte growth. Here, we found that Epac led to the activation of the small G protein H-Ras in primary neonatal cardiac myocytes. A Rap GTPase activating protein (RapGAP) partially inhibited Epac-induced H-Ras activation. Interestingly, we found that H-Ras activation involved the GEF domain of Epac. However, Epac did not directly induce exchange activity on this small GTPase protein. Instead, the effect of Epac on H-Ras activation was dependent on a signalling cascade involving phospholipase C (PLC)/inositol 1,3,5 triphosphate receptor (IP3R) and an increase intracellular calcium. In addition, we found that Epac activation induced histone deacetylase type 4 (HDAC4) translocation. Whereas HDAC5 alone was unresponsive to Epac, it became responsive to Epac in the presence of HDAC4 in COS cells. Consistent with its effect on HDAC cytoplasmic shuttle, Epac activation also increased the prohypertrophic transcription factor MEF2 in a CaMKII dependent manner in primary cardiac myocytes. Thus, our data show that Epac activates a prohypertrophic signalling pathway which involves PLC, H-Ras, CaMKII and HDAC nuclear export.


Asunto(s)
Núcleo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Histona Desacetilasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Calcio/metabolismo , Cardiomegalia/metabolismo , Dominio Catalítico , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Factores de Transcripción MEF2 , Miocitos Cardíacos/enzimología , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción NFATC/metabolismo , Ratas , Fosfolipasas de Tipo C/metabolismo
20.
Int J Biochem Cell Biol ; 41(5): 1173-81, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19015044

RESUMEN

Myocardial stretch is a major determinant of ventricular hypertrophy, a physiological adaptational process that can be detrimental, leading to heart failure. Therapies aimed to limit the development of cardiac hypertrophy are thus currently evaluated. Among possible targets, the small G protein Ras and the epidermal growth factor receptor (EGFR) have been shown to be involved during stretch but their precise role in the activation of the major actors of hypertrophy, the mitogen activated protein kinases (MAPK) ERK and JNK is not well known. Our goal was thus was to evaluate precisely the activation pathways of ERK and JNK during stretch, with an emphasis on the role of the EGFR. For this purpose, neonatal rat cardiomyocytes in culture were stretched for different time durations. As measured by Western blot of their phosphorylated forms, ERK and JNK were activated by stretch. Ras inhibition decreased basal ERK phosphorylation but had no effect on stretch-induced ERK activation. Under basal conditions, EGFR activated ERK in a classical Ras-dependent manner. Upon stretch, EGFR transactivation activated ERK through both Ras-dependent and Ras-independent pathways. Interestingly, we also show that the Akt pathway participates in stretch-induced ERK activation with an involvement of EGFR. Unlike ERK, JNK activation is independent of either EGFR or PI3 kinase but dependent on other tyrosine kinases. In conclusion these data show different Ras-dependent and Ras-independent pathways in basal conditions and during stretch with a previously unrecognized role of Akt in the activation of ERK.


Asunto(s)
Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas ras/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Activación Enzimática , Genes ras , Sistema de Señalización de MAP Quinasas , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transfección , Proteínas ras/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA