Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 20(8): e1012504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39213446

RESUMEN

Oropouche fever, a debilitating illness common in South America, is caused by Oropouche virus (OROV), an arbovirus. OROV belongs to the Peribunyaviridae family, a large group of RNA viruses. Little is known about the biology of Peribunyaviridae in host cells, especially assembly and egress processes. Our research reveals that the small GTPase Rab27a mediates intracellular transport of OROV induced compartments and viral release from infected cells. We show that Rab27a interacts with OROV glycoproteins and colocalizes with OROV during late phases of the infection cycle. Moreover, Rab27a activity is required for OROV trafficking to the cell periphery and efficient release of infectious particles. Consistently, depleting Rab27a's downstream effector, Myosin Va, or inhibiting actin polymerization also hinders OROV compartments targeting to the cell periphery and infectious viral particle egress. These data indicate that OROV hijacks Rab27a activity for intracellular transport and cell externalization. Understanding these crucial mechanisms of OROV's replication cycle may offer potential targets for therapeutic interventions and aid in controlling the spread of Oropouche fever.


Asunto(s)
Cadenas Pesadas de Miosina , Miosina Tipo V , Liberación del Virus , Proteínas rab27 de Unión a GTP , Proteínas rab27 de Unión a GTP/metabolismo , Humanos , Liberación del Virus/fisiología , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Cadenas Pesadas de Miosina/metabolismo , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiología , Replicación Viral/fisiología , Animales , Interacciones Huésped-Patógeno
2.
J Virol ; 97(1): e0133122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475765

RESUMEN

Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.


Asunto(s)
Infecciones por Bunyaviridae , Complejos de Clasificación Endosomal Requeridos para el Transporte , Glicoproteínas de Membrana , Orthobunyavirus , Proteínas Virales , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Orthobunyavirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
PLoS Pathog ; 18(7): e1010629, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35797345

RESUMEN

Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Animales , Núcleo Celular , Chlorocebus aethiops , Herpes Simple/diagnóstico por imagen , Herpesvirus Humano 1/química , Tomografía por Rayos X , Células Vero
5.
J Infect Dis ; 227(4): 543-553, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36408607

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused widespread morbidity and mortality since its onset in late 2019. Here, we demonstrate that prior infection with human cytomegalovirus (HCMV) substantially increases infection with SARS-CoV-2 in vitro. HCMV is a common herpesvirus carried by 40%-100% of the population, which can reactivate in the lung under inflammatory conditions, such as those resulting from SARS-CoV-2 infection. We show in both endothelial and epithelial cell types that HCMV infection upregulates ACE2, the SARS-CoV-2 cell entry receptor. These observations suggest that HCMV reactivation events in the lung of healthy HCMV carriers could exacerbate SARS-CoV-2 infection and subsequent COVID-19 symptoms. This effect could contribute to the disparity of disease severity seen in ethnic minorities and those with lower socioeconomic status, due to their higher CMV seroprevalence. Our results warrant further clinical investigation as to whether HCMV infection influences the pathogenesis of SARS-CoV-2.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Sobreinfección , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Estudios Seroepidemiológicos , Peptidil-Dipeptidasa A , Células Epiteliales/metabolismo
6.
J Biol Chem ; 298(11): 102589, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243114

RESUMEN

Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.


Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Serina-Treonina Quinasas , Ceramidas/genética , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Esfingolípidos/metabolismo , Transporte Biológico/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Aparato de Golgi/metabolismo
7.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083579

RESUMEN

Unlike many segmented negative-sense RNA viruses, most members of the Bunyavirales bud at Golgi membranes, as opposed to the plasma membrane. Central players in this assembly process are the envelope glycoproteins, Gn and Gc, which upon translation undergo proteolytic processing, glycosylation and trafficking to the Golgi, where they interact with ribonucleoprotein genome segments and bud into Golgi-derived compartments. The processes involved in genome packaging during virion assembly can lead to the generation of reassorted viruses, if a cell is co-infected with two different bunyaviruses, due to mismatching of viral genome segment packaging. This can lead to viruses with high pathogenic potential, as demonstrated by the emergence of Schmallenberg virus. This review focuses on the assembly pathways of tri-segmented bunyaviruses, highlighting some areas in need of further research to understand these important pathogens with zoonotic potential.


Asunto(s)
Orthobunyavirus , Virus ARN , Orthobunyavirus/genética , Glicosilación , Ensamble de Virus
8.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34398933

RESUMEN

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Asunto(s)
Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Animales , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimología , Humanos , Monoéster Fosfórico Hidrolasas/genética , Células Vero , Proteínas Virales/genética , Liberación del Virus
9.
J Biol Chem ; 296: 100236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33380421

RESUMEN

Herpesviruses are large and complex viruses that have a long history of coevolution with their host species. One important factor in the virus-host interaction is the alteration of intracellular morphology during viral replication with critical implications for viral assembly. However, the details of this remodeling event are not well understood, in part because insufficient tools are available to deconstruct this highly heterogeneous process. To provide an accurate and reliable method of investigating the spatiotemporal dynamics of virus-induced changes to cellular architecture, we constructed a dual-fluorescent reporter virus that enabled us to classify four distinct stages in the infection cycle of herpes simplex virus-1 at the single cell level. This timestamping method can accurately track the infection cycle across a wide range of multiplicities of infection. We used high-resolution fluorescence microscopy analysis of cellular structures in live and fixed cells in concert with our reporter virus to generate a detailed and chronological overview of the spatial and temporal reorganization during viral replication. The highly orchestrated and striking relocation of many organelles around the compartments of secondary envelopment during transition from early to late gene expression suggests that the reshaping of these compartments is essential for virus assembly. We furthermore find that accumulation of HSV-1 capsids in the cytoplasm is accompanied by fragmentation of the Golgi apparatus with potential impact on the late steps of viral assembly. We anticipate that in the future similar tools can be systematically applied for the systems-level analysis of intracellular morphology during replication of other viruses.


Asunto(s)
Aparato de Golgi/genética , Herpesvirus Humano 1/genética , Microscopía Fluorescente , Replicación Viral/genética , Animales , Cápside/ultraestructura , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/ultraestructura , Citoplasma/virología , Genes Reporteros/genética , Aparato de Golgi/ultraestructura , Aparato de Golgi/virología , Herpesvirus Humano 1/ultraestructura , Humanos , Análisis de la Célula Individual , Análisis Espacio-Temporal , Células Vero , Ensamble de Virus/genética
10.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142673

RESUMEN

BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.


Asunto(s)
Virus BK/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular , Inmunidad Innata , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/metabolismo , Infecciones por Polyomavirus/virología , Proteoma , Proteómica , Biomarcadores , Proteínas de Ciclo Celular/metabolismo , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteómica/métodos , Flujo de Trabajo
11.
Traffic ; 17(1): 21-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26459807

RESUMEN

Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment.


Asunto(s)
Dinaminas/metabolismo , Endocitosis , Glicoproteínas/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Animales , Células COS , Chlorocebus aethiops , Clatrina/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Transporte de Proteínas , Células Vero
12.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27852850

RESUMEN

The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. IMPORTANCE: Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells.


Asunto(s)
ADN Helicasas/metabolismo , ADN Primasa/metabolismo , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Complejos Multiproteicos/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Animales , Chlorocebus aethiops , ADN Helicasas/genética , ADN Primasa/genética , Regulación Viral de la Expresión Génica , Células HEK293 , Herpesvirus Humano 1/ultraestructura , Humanos , Unión Proteica , Transporte de Proteínas , Células Vero , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Ensamble de Virus
13.
Int J Mol Sci ; 19(3)2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29562663

RESUMEN

BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF) attachment protein (α-SNAP) is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.


Asunto(s)
Virus BK/fisiología , Infecciones por Polyomavirus/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Virus BK/genética , Virus BK/ultraestructura , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Membrana Nuclear/metabolismo , Unión Proteica , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Transcripción Genética , Células Vero , Virión/metabolismo , Virión/ultraestructura
14.
Biotechnol Bioeng ; 113(7): 1481-92, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26694540

RESUMEN

It has long been established that UVC light is a very effective method for inactivating pathogens in a fluid, yet the application of UVC irradiation to modern biotechnological processes is limited by the intrinsic short penetration distance of UVC light in optically dense protein solutions. This experimental and numerical study establishes that irradiating a fluid flowing continuously in a microfluidic capillary system, in which the diameter of the capillary is tuned to the depth of penetration of UVC light, uniquely treats the whole volume of the fluid to UVC light, resulting in fast and effective inactivation of pathogens, with particular focus to virus particles. This was demonstrated by inactivating human herpes simplex virus type-1 (HSV-1, a large enveloped virus) on a dense 10% fetal calf serum solution in a range of fluoropolymer capillary systems, including a 0.75 mm and 1.50 mm internal diameter capillaries and a high-throughput MicroCapillary Film with mean hydraulic diameter of 206 µm. Up to 99.96% of HSV-1 virus particles were effectively inactivated with a mean exposure time of up to 10 s, with undetectable collateral damage to solution proteins. The kinetics of virus inactivation matched well the results from a new mathematical model that considers the parabolic flow profile in the capillaries, and showed the methodology is fully predictable and scalable and avoids both the side effect of UVC light to proteins and the dilution of the fluid in current tubular UVC inactivation systems. This is expected to speed up the industrial adoption of non-invasive UVC virus inactivation in clinical biotechnology and biomanufacturing of therapeutic molecules. Biotechnol. Bioeng. 2016;113: 1481-1492. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Fotólisis , Virión/efectos de la radiación , Inactivación de Virus/efectos de la radiación , Herpesvirus Humano 1/efectos de la radiación , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos
15.
PLoS Pathog ; 9(8): e1003514, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950709

RESUMEN

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.


Asunto(s)
Genoma Humano , Herpesvirus Humano 1/fisiología , Interleucinas/biosíntesis , Complejo Mediador/biosíntesis , Regulación hacia Arriba , Replicación Viral/fisiología , Eliminación de Gen , Células HeLa , Herpes Simple/genética , Herpes Simple/inmunología , Herpes Simple/metabolismo , Humanos , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/metabolismo , Interferones , Interleucinas/genética , Interleucinas/inmunología , Complejo Mediador/genética , Complejo Mediador/inmunología , Polimorfismo de Nucleótido Simple , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , ARN Polimerasa II/metabolismo
16.
J Virol ; 87(24): 13115-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24067977

RESUMEN

The interferon-inducible membrane protein tetherin (Bst-2, or CD317) is an antiviral factor that inhibits enveloped virus release by cross-linking newly formed virus particles to the producing cell. The majority of viruses that are sensitive to tetherin restriction appear to be those that acquire their envelopes at the plasma membrane, although many viruses, including herpesviruses, envelope at intracellular membranes, and the effect of tetherin on such viruses has been less well studied. We investigated the tetherin sensitivity and possible countermeasures of herpes simplex virus 1 (HSV-1). We found that overexpression of tetherin inhibits HSV-1 release and that HSV-1 efficiently depletes tetherin from infected cells. We further show that the virion host shutoff protein (Vhs) is important for depletion of tetherin mRNA and protein and that removal of tetherin compensates for defects in replication and release of a Vhs-null virus. Vhs is known to be important for HSV-1 to evade the innate immune response in vivo. Taken together, our data suggest that tetherin has antiviral activity toward HSV-1 and that the removal of tetherin by Vhs is important for the efficient replication and dissemination of HSV-1.


Asunto(s)
Antígenos CD/metabolismo , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Ribonucleasas/metabolismo , Proteínas Virales/metabolismo , Antígenos CD/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Herpes Simple/genética , Herpesvirus Humano 1/genética , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Ribonucleasas/genética , Proteínas Virales/genética , Liberación del Virus , Replicación Viral
17.
Cell Host Microbe ; 32(4): 466-478.e11, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479395

RESUMEN

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.


Asunto(s)
Citomegalovirus , Proteómica , Humanos , Citomegalovirus/fisiología , Ensamble de Virus , Replicación Viral , Proteínas , Autofagia , Lisosomas , Concentración de Iones de Hidrógeno
18.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38652659

RESUMEN

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Asunto(s)
Herpesvirus Humano 1 , Nucleótidos Cíclicos , Animales , Humanos , Células HEK293 , Herpes Simple/virología , Herpes Simple/metabolismo , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Nucleótidos Cíclicos/metabolismo , Proteínas Virales/metabolismo
19.
J Virol ; 86(1): 473-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013045

RESUMEN

The incorporation of tegument proteins into the herpes simplex virus 1 (HSV-1) virion during virion assembly is thought to be a complex, multistage process occurring via numerous interactions between the tegument and the capsid, within the tegument, and between the tegument and the envelope. Here, we set out to examine if the direct interaction between two essential tegument proteins VP1/2 and VP16 is required for connecting the inner tegument with the outer tegument. By using glutathione S-transferase (GST) pulldowns, we identified an essential role of lysine 343 in VP16, mutation of which to a neutral amino acid abrogated the interaction between VP1/2 and VP16. When the K343A substitution was inserted into the gene encoding VP16 (UL48) of the viral genome, HSV-1 replicated successfully although its growth was delayed, and final titers were reduced compared to titers of wild-type virus. Surprisingly, the mutated VP16 was incorporated into virions at levels similar to those of wild-type VP16. However, the analysis of VP16 on cytoplasmic capsids by fluorescence microscopy showed that VP16 associated with cytoplasmic capsids less efficiently when the VP16-VP1/2 interaction was inhibited. This implies that the direct interaction between VP1/2 and VP16 is important for the efficiency/timing of viral assembly but is not essential for HSV-1 replication in cell culture. These data also support the notion that the incorporation of tegument proteins into the herpesviruses is a very complex process with significant redundancy.


Asunto(s)
Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteína Vmw65 de Virus del Herpes Simple/química , Proteína Vmw65 de Virus del Herpes Simple/genética , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Humanos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Alineación de Secuencia , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Ensamble de Virus , Replicación Viral
20.
J Gen Virol ; 93(Pt 2): 319-329, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22012461

RESUMEN

Herpes simplex virus type 1 glycoprotein M (gM) is a type III membrane protein conserved throughout the family Herpesviridae. However, despite this conservation, gM is classed as a non-essential protein in most alphaherpesviruses. Previous data have suggested that gM is involved in secondary envelopment, although how gM functions in this process is unknown. Using transfection-based assays, we have previously shown that gM is able to mediate the internalization and subcellular targeting of other viral envelope proteins, suggesting a possible role for gM in localizing herpesvirus envelope proteins to sites of secondary envelopment. To investigate the role of gM in infected cells, we have now analysed viral envelope protein localization and virion incorporation in cells infected with a gM-deletion virus or its revertant. In the absence of gM expression, we observed a substantial inhibition of glycoprotein H-L (gH-L) internalization from the surface of infected cells. Although deletion of gM does not affect expression of gH and gL, virions assembled in the absence of gM demonstrated significantly reduced levels of gH-L, correlating with defects of the gM-negative virus in entry and cell-to-cell spread. These data suggest an important role of gM in mediating the specific internalization and efficient targeting of gH-L to sites of secondary envelopment in infected cells.


Asunto(s)
Herpesvirus Humano 1/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Animales , Chlorocebus aethiops , Eliminación de Gen , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crecimiento & desarrollo , Glicoproteínas de Membrana/genética , Células Vero , Proteínas Virales/genética , Virión/química , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA