Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dig Dis Sci ; 69(1): 148-160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957410

RESUMEN

BACKGROUND: Acute pancreatitis is an inflammation of the pancreatic glandular parenchyma that causes injury with or without the destruction of pancreatic acini. Clinical and experimental evidence suggest that certain systemic proinflammatory mediators may be responsible for initiating the fundamental mechanisms involved in microglial reactivity. Here, we investigated the possible repercussions of acute pancreatitis (AP) on the production of inflammatory mediators in the brain parenchyma focusing on microglial activation in the hippocampus. METHODS: The acute pancreatic injury in rats was induced by a pancreas ligation surgical procedure (PLSP) on the splenic lobe, which corresponds to approximately 10% of total mass of the pancreas. Blood samples were collected via intracardiac puncture for the measurement of serum amylase. After euthanasia, frozen or paraffin-embedded brains and pancreas were analyzed using qRT-PCR or immunohistochemistry, respectively. RESULTS: Immunohistochemistry assays showed a large number of Iba1 and PU.1-positive cells in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus of the PLSP group. TNF-α mRNA expression was significantly higher in the brain from PLSP group. NLRP3 inflammasome expression was found to be significantly increased in the pancreas and brain of rats of the PLSP group. High levels of BNDF mRNA were found in the rat brain of PLSP group. In contrast, NGF mRNA levels were significantly higher in the control group versus PLSP group. CONCLUSION: Our findings suggest that AP has the potential to induce morphological changes in microglia consistent with an activated phenotype.


Asunto(s)
Pancreatitis , Ratas , Animales , Pancreatitis/metabolismo , Microglía/metabolismo , Enfermedad Aguda , Hipocampo/metabolismo , Páncreas/metabolismo , ARN Mensajero/metabolismo
2.
Anesthesiology ; 138(4): 420-435, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36571572

RESUMEN

BACKGROUND: Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. METHODS: Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. RESULTS: At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. CONCLUSIONS: In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.


Asunto(s)
Productos Biológicos , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Ratas , Masculino , Animales , Ratas Wistar , Frecuencia Respiratoria , Molécula 1 de Adhesión Celular Vascular , Síndrome de Dificultad Respiratoria/prevención & control , Presión de las Vías Aéreas Positiva Contínua
3.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36192337

RESUMEN

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Ratas , Masculino , Proteómica , Dióxido de Carbono/metabolismo , Ratas Wistar , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Nitrógeno/metabolismo
4.
Crit Care Med ; 49(9): e880-e890, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33870913

RESUMEN

OBJECTIVES: To ascertain whether systemic administration of mitochondria-rich fraction isolated from mesenchymal stromal cells would reduce lung, kidney, and liver injury in experimental sepsis. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Sixty C57BL/6 male mice. INTERVENTIONS: Sepsis was induced by cecal ligation and puncture; sham-operated animals were used as control. At 24 hours after surgery, cecal ligation and puncture and Sham animals were further randomized to receive saline or mitochondria-rich fraction isolated from mesenchymal stromal cells (3 × 106) IV. At 48 hours, survival, peritoneal bacterial load, lung, kidney, and liver injury were analyzed. Furthermore, the effects of mitochondria on oxygen consumption rate and reactive oxygen species production of lung epithelial and endothelial cells were evaluated in vitro. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of lung epithelial and endothelial cells from cecal ligation and puncture animals to mitochondria-rich fraction isolated from mesenchymal stromal cells restored oxygen consumption rate and reduced total reactive oxygen species production. Infusion of exogenous mitochondria-rich fraction from mesenchymal stromal cells (mitotherapy) reduced peritoneal bacterial load, improved lung mechanics and histology, and decreased the expression of interleukin-1ß, keratinocyte chemoattractant, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in lung tissue, while increasing keratinocyte growth factor expression and survival rate in cecal ligation and puncture-induced sepsis. Mitotherapy also reduced kidney and liver injury, plasma creatinine levels, and messenger RNA expressions of interleukin-18 in kidney, interleukin-6, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in liver, while increasing nuclear factor erythroid 2-related factor-2 and superoxide dismutase-2 in kidney and interleukin-10 in liver. CONCLUSIONS: Mitotherapy decreased lung, liver, and kidney injury and increased survival rate in cecal ligation and puncture-induced sepsis.


Asunto(s)
Células Madre Mesenquimatosas/patología , Mitocondrias/metabolismo , Sepsis/complicaciones , Animales , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Pulmón/patología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL/metabolismo , Insuficiencia Multiorgánica
5.
Crit Care Med ; 46(6): e609-e617, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29485489

RESUMEN

OBJECTIVES: To compare a time-controlled adaptive ventilation strategy, set in airway pressure release ventilation mode, versus a protective mechanical ventilation strategy in pulmonary and extrapulmonary acute respiratory distress syndrome with similar mechanical impairment. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Forty-two Wistar rats. INTERVENTIONS: Pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome were induced by instillation of Escherichia coli lipopolysaccharide intratracheally or intraperitoneally, respectively. After 24 hours, animals were randomly assigned to receive 1 hour of volume-controlled ventilation (n = 7/etiology) or time-controlled adaptive ventilation (n = 7/etiology) (tidal volume = 8 mL/kg). Time-controlled adaptive ventilation consisted of the application of continuous positive airway pressure 2 cm H2O higher than baseline respiratory system peak pressure for a time (Thigh) of 0.75-0.85 seconds. The release pressure (Plow = 0 cm H2O) was applied for a time (Tlow) of 0.11-0.18 seconds. Tlow was set to target an end-expiratory flow to peak expiratory flow ratio of 75%. Nonventilated animals (n = 7/etiology) were used for Diffuse Alveolar Damage and molecular biology markers analyses. MEASUREMENT AND MAIN RESULTS: Time-controlled adaptive ventilation increased mean respiratory system pressure regardless of acute respiratory distress syndrome etiology. The Diffuse Alveolar Damage score was lower in time-controlled adaptive ventilation compared with volume-controlled ventilation in pulmonary acute respiratory distress syndrome and lower in time-controlled adaptive ventilation than nonventilated in extrapulmonary acute respiratory distress syndrome. In pulmonary acute respiratory distress syndrome, volume-controlled ventilation, but not time-controlled adaptive ventilation, increased the expression of amphiregulin, vascular cell adhesion molecule-1, and metalloproteinase-9. Collagen density was higher, whereas expression of decorin was lower in time-controlled adaptive ventilation than nonventilated, independent of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, time-controlled adaptive ventilation increased syndecan expression. CONCLUSION: In pulmonary acute respiratory distress syndrome, time-controlled adaptive ventilation led to more pronounced beneficial effects on expression of biomarkers related to overdistension and extracellular matrix homeostasis.


Asunto(s)
Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Animales , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/ultraestructura , Masculino , Microscopía Electrónica de Transmisión , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/patología , Resultado del Tratamiento
6.
Crit Care ; 21(1): 67, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28320449

RESUMEN

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2017. Other selected articles can be found online at http://ccforum.com/series/annualupdate2017 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901 .


Asunto(s)
Anestésicos/farmacología , Inmunidad/efectos de los fármacos , Antiinflamatorios/farmacología , Humanos , Terapia de Inmunosupresión
7.
Crit Care ; 18(4): 474, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25113136

RESUMEN

INTRODUCTION: Sigh improves oxygenation and lung mechanics during pressure control ventilation (PCV) and pressure support ventilation (PSV) in patients with acute respiratory distress syndrome. However, so far, no study has evaluated the biological impact of sigh during PCV or PSV on the lung and distal organs in experimental pulmonary (p) and extrapulmonary (exp) mild acute lung injury (ALI). METHODS: In 48 Wistar rats, ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and mechanically ventilated with PCV or PSV with a tidal volume of 6 mL/kg, FiO2 = 0.4, and PEEP = 5 cmH2O for 1 hour. Both ventilator strategies were then randomly assigned to receive periodic sighs (10 sighs/hour, Sigh) or not (non-Sigh, NS). Ventilatory and mechanical parameters, arterial blood gases, lung histology, interleukin (IL)-1ß, IL-6, caspase-3, and type III procollagen (PCIII) mRNA expression in lung tissue, and number of apoptotic cells in lung, liver, and kidney specimens were analyzed. RESULTS: In both ALI etiologies: (1) PCV-Sigh and PSV-Sigh reduced transpulmonary pressure, and (2) PSV-Sigh reduced the respiratory drive compared to PSV-NS. In ALIp: (1) PCV-Sigh and PSV-Sigh decreased alveolar collapse as well as IL-1ß, IL-6, caspase-3, and PCIII expressions in lung tissue, (2) PCV-Sigh increased alveolar-capillary membrane and endothelial cell damage, and (3) abnormal myofibril with Z-disk edema was greater in PCV-NS than PSV-NS. In ALIexp: (1) PSV-Sigh reduced alveolar collapse, but led to damage to alveolar-capillary membrane, as well as type II epithelial and endothelial cells, (2) PCV-Sigh and PSV-Sigh increased IL-1ß, IL-6, caspase-3, and PCIII expressions, and (3) PCV-Sigh increased the number of apoptotic cells in the lung compared to PCV-NS. CONCLUSIONS: In these models of mild ALIp and ALIexp, sigh reduced alveolar collapse and transpulmonary pressures during both PCV and PSV; however, improved lung protection only during PSV in ALIp.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Respiración con Presión Positiva/métodos , Mecánica Respiratoria/fisiología , Animales , Apoptosis/fisiología , Biomarcadores , Diafragma/patología , Modelos Animales de Enfermedad , Fibrosis/patología , Inflamación/patología , Inflamación/fisiopatología , Pulmón/patología , Masculino , Microscopía Electrónica , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estadísticas no Paramétricas , Volumen de Ventilación Pulmonar
8.
Eur J Med Res ; 29(1): 248, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649940

RESUMEN

BACKGROUND: Non-invasive respiratory support (conventional oxygen therapy [COT], non-invasive ventilation [NIV], high-flow nasal oxygen [HFNO], and NIV alternated with HFNO [NIV + HFNO] may reduce the need for invasive mechanical ventilation (IMV) in patients with COVID-19. The outcome of patients treated non-invasively depends on clinical severity at admission. We assessed the need for IMV according to NIV, HFNO, and NIV + HFNO in patients with COVID-19 according to disease severity and evaluated in-hospital survival rates and hospital and intensive care unit (ICU) lengths of stay. METHODS: This cohort study was conducted using data collected between March 2020 and July 2021. Patients ≥ 18 years admitted to the ICU with a diagnosis of COVID-19 were included. Patients hospitalized for < 3 days, receiving therapy (COT, NIV, HFNO, or NIV + HFNO) for < 48 h, pregnant, and with no primary outcome data were excluded. The COT group was used as reference for multivariate Cox regression model adjustment. RESULTS: Of 1371 patients screened, 958 were eligible: 692 (72.2%) on COT, 92 (9.6%) on NIV, 31 (3.2%) on HFNO, and 143 (14.9%) on NIV + HFNO. The results for the patients in each group were as follows: median age (interquartile range): NIV (64 [49-79] years), HFNO (62 [55-70] years), NIV + HFNO (62 [48-72] years) (p = 0.615); heart failure: NIV (54.5%), HFNO (36.3%), NIV + HFNO (9%) (p = 0.003); diabetes mellitus: HFNO (17.6%), NIV + HFNO (44.7%) (p = 0.048). > 50% lung damage on chest computed tomography (CT): NIV (13.3%), HFNO (15%), NIV + HFNO (71.6%) (p = 0.038); SpO2/FiO2: NIV (271 [118-365] mmHg), HFNO (317 [254-420] mmHg), NIV + HFNO (229 [102-317] mmHg) (p = 0.001); rate of IMV: NIV (26.1%, p = 0.002), HFNO (22.6%, p = 0.023), NIV + HFNO (46.8%); survival rate: HFNO (83.9%), NIV + HFNO (63.6%) (p = 0.027); ICU length of stay: NIV (8.5 [5-14] days), NIV + HFNO (15 [10-25] days (p < 0.001); hospital length of stay: NIV (13 [10-21] days), NIV + HFNO (20 [15-30] days) (p < 0.001). After adjusting for comorbidities, chest CT score and SpO2/FiO2, the risk of IMV in patients on NIV + HFNO remained high (hazard ratio, 1.88; 95% confidence interval, 1.17-3.04). CONCLUSIONS: In patients with COVID-19, NIV alternating with HFNO was associated with a higher rate of IMV independent of the presence of comorbidities, chest CT score and SpO2/FiO2. Trial registration ClinicalTrials.gov identifier: NCT05579080.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Terapia por Inhalación de Oxígeno , Humanos , Ventilación no Invasiva/métodos , Femenino , Masculino , COVID-19/terapia , COVID-19/complicaciones , Terapia por Inhalación de Oxígeno/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Tiempo de Internación , Unidades de Cuidados Intensivos , SARS-CoV-2 , Mortalidad Hospitalaria
9.
Crit Care ; 17(5): R228, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24103805

RESUMEN

INTRODUCTION: Biphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assistance has not been determined. Furthermore, it is unclear whether the effects of partial ventilatory support depend on acute lung injury (ALI) etiology. This study aimed to investigate the impact of spontaneous and time-cycled control breaths during BIVENT on the lung and diaphragm in experimental pulmonary (p) and extrapulmonary (exp) ALI. METHODS: This was a prospective, randomized, controlled experimental study of 60 adult male Wistar rats. Mild ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALI(p)) or intraperitoneally (ALI(exp)). After 24 hours, animals were anesthetized and further randomized as follows: (1) pressure-controlled ventilation (PCV) with tidal volume (V(t)) = 6 ml/kg, respiratory rate = 100 breaths/min, PEEP = 5 cmH2O, and inspiratory-to-expiratory ratio (I:E) = 1:2; or (2) BIVENT with three spontaneous and time-cycled control breath modes (100, 75, and 50 breaths/min). BIVENT was set with two levels of CPAP (P(high) = 10 cmH2O and P(low) = 5 cmH2O). Inspiratory time was kept constant (T(high) = 0.3 s). RESULTS: BIVENT was associated with reduced markers of inflammation, apoptosis, fibrogenesis, and epithelial and endothelial cell damage in lung tissue in both ALI models when compared to PCV. The inspiratory effort during spontaneous breaths increased during BIVENT-50 in both ALI models. In ALI(p), alveolar collapse was higher in BIVENT-100 than PCV, but decreased during BIVENT-50, and diaphragmatic injury was lower during BIVENT-50 compared to PCV and BIVENT-100. In ALI(exp), alveolar collapse during BIVENT-100 and BIVENT-75 was comparable to PCV, while decreasing with BIVENT-50, and diaphragmatic injury increased during BIVENT-50. CONCLUSIONS: In mild ALI, BIVENT had a lower biological impact on lung tissue compared to PCV. In contrast, the response of atelectasis and diaphragmatic injury to BIVENT differed according to the rate of spontaneous/controlled breaths and ALI etiology.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Ventilación con Presión Positiva Intermitente/métodos , Pulmón/patología , Lesión Pulmonar Aguda/etiología , Animales , Apoptosis , Biomarcadores , Brasil , Modelos Animales de Enfermedad , Endotelio/patología , Epitelio/patología , Fibrosis , Inhalación/fisiología , Ventilación con Presión Positiva Intermitente/efectos adversos , Masculino , Estudios Prospectivos , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Volumen de Ventilación Pulmonar/fisiología
10.
Expert Rev Respir Med ; 17(3): 223-235, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36964742

RESUMEN

INTRODUCTION: Cell therapy has emerged as an alternative option for chronic lung diseases with the highest rates of morbidity and mortality rates worldwide. AREAS COVERED: This review addresses the definition of mesenchymal stromal cells (MSCs), their properties, mechanisms of action, as well as preclinical and clinical studies that have used cell therapy in chronic lung diseases such as asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, and silicosis. Ongoing clinical trials are also presented. EXPERT OPINION: Experimental evidence has shown that MSCs have immunomodulatory and regenerative properties that could rescue impaired lung function and histoarchitecture. Their beneficial effects have been mainly associated with their ability to communicate with target cells through the secretion of soluble mediators and extracellular vesicles or even through transfer of organelles (e.g. mitochondria). MSC-derived conditioned medium, extracellular vesicles and mitochondria induce beneficial effects in selected scenarios. The initial results in clinical trials were modest compared with the experimental results, therefore researchers were encouraged to move from bedside back to bench to develop new strategies able to potentiate the effects of MSCs.


Asunto(s)
Asma , Vesículas Extracelulares , Enfermedades Pulmonares , Células Madre Mesenquimatosas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedades Pulmonares/terapia
11.
J Clin Med ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36835919

RESUMEN

Over the last decade, the management of acute respiratory distress syndrome (ARDS) has made considerable progress both regarding supportive and pharmacologic therapies. Lung protective mechanical ventilation is the cornerstone of ARDS management. Current recommendations on mechanical ventilation in ARDS include the use of low tidal volume (VT) 4-6 mL/kg of predicted body weight, plateau pressure (PPLAT) < 30 cmH2O, and driving pressure (∆P) < 14 cmH2O. Moreover, positive end-expiratory pressure should be individualized. Recently, variables such as mechanical power and transpulmonary pressure seem promising for limiting ventilator-induced lung injury and optimizing ventilator settings. Rescue therapies such as recruitment maneuvers, vasodilators, prone positioning, extracorporeal membrane oxygenation, and extracorporeal carbon dioxide removal have been considered for patients with severe ARDS. Regarding pharmacotherapies, despite more than 50 years of research, no effective treatment has yet been found. However, the identification of ARDS sub-phenotypes has revealed that some pharmacologic therapies that have failed to provide benefits when considering all patients with ARDS can show beneficial effects when these patients were stratified into specific sub-populations; for example, those with hyperinflammation/hypoinflammation. The aim of this narrative review is to provide an overview on current advances in the management of ARDS from mechanical ventilation to pharmacological treatments, including personalized therapy.

12.
Bioeng Transl Med ; 8(2): e10401, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925690

RESUMEN

Silicosis is an irreversible and progressive fibrotic lung disease caused by massive inhalation of crystalline silica dust at workplaces, affecting millions of industrial workers worldwide. A tyrosine kinase inhibitor, nintedanib (NTB), has emerged as a potential silicosis treatment due to its inhibitory effects on key signaling pathways that promote silica-induced pulmonary fibrosis. However, chronic and frequent use of the oral NTB formulation clinically approved for treating other fibrotic lung diseases often results in significant side effects. To this end, we engineered a nanocrystal-based suspension formulation of NTB (NTB-NS) possessing specific physicochemical properties to enhance drug retention in the lung for localized treatment of silicosis via inhalation. Our NTB-NS formulation was prepared using a wet-milling procedure in presence of Pluronic F127 to endow the formulation with nonadhesive surface coatings to minimize interactions with therapy-inactivating delivery barriers in the lung. We found that NTB-NS, following intratracheal administration, provided robust anti-fibrotic effects and mechanical lung function recovery in a mouse model of silicosis, whereas a 100-fold greater oral NTB dose given with a triple dosing frequency failed to do so. Importantly, several key pathological phenotypes were fully normalized by NTB-NS without displaying notable local or systemic adverse effects. Overall, NTB-NS may open a new avenue for localized treatment of silicosis and potentially other fibrotic lung diseases.

13.
Curr Vasc Pharmacol ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115617

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.

14.
Life Sci ; 329: 121988, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517581

RESUMEN

AIMS: To evaluate BM-MSCs and their extracellular vesicles (EVs) preconditioned with hypoxia or normoxia in experimental pulmonary arterial hypertension (PAH). MAIN METHODS: BM-MSCs were isolated and cultured under normoxia (MSC-N, 21%O2) or hypoxia (MSC-H, 1%O2) for 48 h. EVs were then isolated from MSCs under normoxia (EV-N) or hypoxia (EV-H). PAH was induced in male Wistar rats (n = 35) with monocrotaline (60 mg/kg); control animals (CTRL, n = 7) were treated with saline. On day 14, PAH animals received MSCs or EVs under normoxia or hypoxia, intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time (PAT)/pulmonary ejection time (PET), and right ventricular hypertrophy (RVH) index were evaluated. Perivascular collagen content, vascular wall thickness, and endothelium-mesenchymal transition were analyzed. KEY FINDINGS: PAT/PET was lower in the PAH group (0.26 ± 0.02, P < 0.001) than in CTRLs (0.43 ± 0.02) and only increased in the EV-H group (0.33 ± 0.03, P = 0.014). MSC-N (32 ± 6 mmHg, P = 0.036), MSC-H (31 ± 3 mmHg, P = 0.019), EV-N (27 ± 4 mmHg, P < 0.001), and EV-H (26 ± 5 mmHg, P < 0.001) reduced RVSP compared with the PAH group (39 ± 4 mmHg). RVH was higher in the PAH group than in CTRL and reduced after all therapies. All therapies decreased perivascular collagen fiber content, vascular wall thickness, and the expression of endothelial markers remained unaltered; only MSC-H and EV-H decreased expression of mesenchymal markers in pulmonary arterioles. SIGNIFICANCE: MSCs and EVs, under normoxia or hypoxia, reduced right ventricular hypertrophy, perivascular collagen, and vessel wall thickness. Under hypoxia, MSCs and EVs were more effective at improving endothelial to mesenchymal transition in experimental PAH.


Asunto(s)
Vesículas Extracelulares , Hipertensión Pulmonar , Células Madre Mesenquimatosas , Hipertensión Arterial Pulmonar , Ratas , Animales , Masculino , Hipertensión Arterial Pulmonar/terapia , Hipertensión Arterial Pulmonar/metabolismo , Hipertrofia Ventricular Derecha , Médula Ósea/metabolismo , Células Cultivadas , Ratas Wistar , Hipertensión Pulmonar Primaria Familiar , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colágeno/metabolismo , Hipoxia/metabolismo
15.
Intensive Care Med Exp ; 10(1): 53, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36529842

RESUMEN

BACKGROUND: Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS: In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS: In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.

16.
Sci Rep ; 12(1): 10673, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739230

RESUMEN

To date, no specific diagnostic criteria for sepsis-associated encephalopathy (SAE) have been established. We studied 33 pediatric patients with sepsis prospectively and evaluated the level of consciousness, the presence of delirium, electroencephalographic (EEG) findings, and plasma levels of neuron-specific enolase and S100-calcium-binding protein-B. A presumptive diagnosis of SAE was primarily considered in the presence of a decreased level of consciousness and/or delirium (clinical criteria), but specific EEG abnormalities were also considered (EEG criteria). The time course of the biomarkers was compared between groups with and without clinical or EEG criteria. The Functional Status Scale (FSS) was assessed at admission, discharge, and 3-6 months post-discharge. Clinical criteria were identified in 75.8% of patients, EEG criteria in 26.9%, both in 23.1%, and none in 23.1%. Biomarkers did not differ between groups. Three patients had an abnormal FSS at discharge, but no one on follow-up. A definitive diagnostic pattern for SAE remained unclear. Clinical criteria should be the basis for diagnosis, but sedation may be a significant confounder, also affecting EEG interpretation. The role of biomarkers requires a better definition. The diagnosis of SAE in pediatric patients remains a major challenge. New consensual diagnostic definitions and mainly prognostic studies are needed.


Asunto(s)
Delirio , Encefalopatía Asociada a la Sepsis , Cuidados Posteriores , Biomarcadores , Niño , Electroencefalografía , Humanos , Alta del Paciente , Encefalopatía Asociada a la Sepsis/diagnóstico
17.
Front Immunol ; 12: 782074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887870

RESUMEN

Mitochondria are essential organelles for cell metabolism, growth, and function. Mitochondria in lung cells have important roles in regulating surfactant production, mucociliary function, mucus secretion, senescence, immunologic defense, and regeneration. Disruption in mitochondrial physiology can be the central point in several pathophysiologic pathways of chronic lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and interaction with the endoplasmic reticulum are involved in chronic lung diseases and highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested as a potential therapeutic target for lung diseases.


Asunto(s)
Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Animales , Biomarcadores , Enfermedad Crónica , Diagnóstico Diferencial , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/terapia , Dinámicas Mitocondriales , Mitofagia , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Transducción de Señal
18.
Pharmacol Res Perspect ; 9(5): e00873, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34632734

RESUMEN

We hypothesized whether propofol or active propofol component (2,6-diisopropylphenol [DIPPH] and lipid excipient [LIP-EXC]) separately may alter inflammatory mediators expressed by macrophages and neutrophils in lean and obese rats. Male Wistar rats (n = 10) were randomly assigned to receive a standard (lean) or obesity-inducing diet (obese) for 12 weeks. Animals were euthanized, and alveolar macrophages and neutrophils from lean and obese animals were exposed to propofol (50 µM), active propofol component (50 µM, 2,6-DIPPH), and lipid excipient (soybean oil, purified egg phospholipid, and glycerol) for 1 h. The primary outcome was IL-6 expression after propofol and its components exposure by alveolar macrophages extracted from bronchoalveolar lavage fluid. The secondary outcomes were the production of mediators released by macrophages from adipose tissue, and neutrophils from lung and adipose tissues, and neutrophil migration. IL-6 increased after the exposure to both propofol (median [interquartile range] 4.14[1.95-5.20]; p = .04) and its active component (2,6-DIPPH) (4.09[1.67-5.91]; p = .04) in alveolar macrophages from obese animals. However, only 2,6-DIPPH increased IL-10 expression (7.59[6.28-12.95]; p = .001) in adipose tissue-derived macrophages. Additionally, 2,6-DIPPH increased C-X-C chemokine receptor 2 and 4 (CXCR2 and CXCR4, respectively) in lung (10.08[8.23-29.01]; p = .02; 1.55[1.49-3.43]; p = .02) and adipose tissues (8.78[4.15-11.57]; p = .03; 2.86[2.17-3.71]; p = .01), as well as improved lung-derived neutrophil migration (28.00[-3.42 to 45.07]; p = .001). In obesity, the active component of propofol affected both the M1 and M2 markers as well as neutrophils in both alveolar and adipose tissue cells, suggesting that lipid excipient may hinder the effects of active propofol.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Excipientes/farmacología , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Obesidad/metabolismo , Propofol/farmacología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Quimiotaxis de Leucocito/efectos de los fármacos , Glicerol/farmacología , Interleucina-10/metabolismo , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Fosfolípidos/farmacología , Ratas , Receptores CXCR4/efectos de los fármacos , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/efectos de los fármacos , Receptores de Interleucina-8B/metabolismo , Aceite de Soja/farmacología
19.
Front Physiol ; 12: 593223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584343

RESUMEN

Severe acute respiratory disease coronavirus 2 (SARS-CoV-2, formerly 2019-nCoV) is a novel coronavirus that has rapidly disseminated worldwide, causing the coronavirus disease 2019 (COVID-19) pandemic. As of January 6th, 2021, there were over 86 million global confirmed cases, and the disease has claimed over 1.87 million lives (a ∼2.2% case fatality rate). SARS-CoV-2 is able to infect human cells by binding its spike (S) protein to angiotensin-conversing enzyme 2 (ACE2), which is expressed abundantly in several cell types and tissues. ACE2 has extensive biological activities as a component of the renin-angiotensin-aldosterone system (RAAS) and plays a pivotal role as counter-regulator of angiotensin II (Ang II) activity by converting the latter to Ang (1-7). Virion binding to ACE2 for host cell entry leads to internalization of both via endocytosis, as well as activation of ADAM17/TACE, resulting in downregulation of ACE2 and loss of its protective actions in the lungs and other organs. Although COVID-19 was initially described as a purely respiratory disease, it is now known that infected individuals can rapidly progress to a multiple organ dysfunction syndrome. In fact, all human structures that express ACE2 are susceptible to SARS-CoV-2 infection and/or to the downstream effects of reduced ACE2 levels, namely systemic inflammation and injury. In this review, we aim to summarize the major features of SARS-CoV-2 biology and the current understanding of COVID-19 pathogenesis, as well as its clinical repercussions in the lung, heart, kidney, bowel, liver, and brain. We also highlight potential therapeutic targets and current global efforts to identify safe and effective therapies against this life-threatening condition.

20.
Curr Neuropharmacol ; 19(10): 1661-1687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33632101

RESUMEN

Traumatic brain injury (TBI) is a major cause of disability and death worldwide. The initial mechanical insult results in tissue and vascular disruption with hemorrhages and cellular necrosis that is followed by dynamic secondary brain damage that presumably results in additional destruction of the brain. In order to minimize deleterious consequences of the secondary brain damage- such as inflammation, bleeding or reduced oxygen supply. The old concept of the -staircase approach- has been updated in recent years by most guidelines and should be followed as it is considered the only validated approach for the treatment of TBI. Besides, a variety of novel therapies have been proposed as neuroprotectants. The molecular mechanisms of each drug involved in the inhibition of secondary brain injury can result as a potential target for the early and late treatment of TBI. However, no specific recommendation is available on their use in the clinical setting. The administration of both synthetic and natural compounds, which act on specific pathways involved in the destructive processes after TBI, even if usually employed for the treatment of other diseases, can show potential benefits. This review represents a massive effort towards current and novel therapies for TBI that have been investigated in both pre-clinical and clinical settings. This review aims to summarize the advancement in therapeutic strategies based on specific and distinct -target of therapies-: brain edema, ICP control, neuronal activity and plasticity, anti-inflammatory and immunomodulatory effects, cerebral autoregulation, antioxidant properties, and future perspectives with the adoption of mesenchymal stromal cells.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Encéfalo , Edema Encefálico/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Humanos , Fármacos Neuroprotectores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA