RESUMEN
This study described the growth, morphometric, biomechanical, and chemical properties of the femur, tibiotarsus, and tarsometatarsus of European and Japanese quail. Analyses were performed at 13 and 15 days of incubation, at hatch, and at 4, 7, 10, 14, 21, 28, and 35 days post-hatch (n=6/subspecies/period). Bone specimens were analyzed by cone-beam computed tomography, biomechanical assays, chemical analyses, and histomorphometry. Variables were fitted by the Gompertz function and its derivative or assessed using the analysis of variance. Analysis of the derivative of Gompertz curves showed that the growth behavior of the tarsometatarsal bone was similar between quail subspecies, and the femur and tibiotarsus of European quail increased first in width and then in length, whereas the opposite occurred in Japanese quail. There was an interaction between quail subspecies and days of growth on femoral, tarsometatarsal, and tibiotarsal bone densities. Femoral and tibiotarsal cross-sectional areas were influenced by the interaction of quail subspecies and day of growth. Interaction effects were significant for breaking strength and phosphorus percentage. European and Japanese quail have different femoral and tibiotarsal growth patterns, especially in the first few days after hatching, whereas tarsometatarsal growth is similar between subspecies.