Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Huntingtons Dis ; 11(1): 25-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35253772

RESUMEN

BACKGROUND: In recent years the functions of astrocytes have shifted from conventional supportive roles to also include active roles in altering synapses and engulfment of cellular debris. Recent studies have implicated astrocytes in both protective and pathogenic roles impacting Huntington's disease (HD) progression. OBJECTIVE: The goal of this study is to determine if phagocytosis of cellular debris is compromised in HD striatal astrocytes. METHODS: Primary adult astrocytes were derived from two HD mouse models; the fast-progressing R6/2 and slower progressing Q175. With the use of laser nanosurgery, a single astrocyte was lysed within an astrocyte network. The phagocytic response of astrocytes was observed with phase contrast and by fluorescence microscopy for GFP-LC3 transiently transfected cells. RESULTS: Astrocyte phagocytosis was significantly diminished in primary astrocytes, consistent with the progression of HD in R6/2 and Q175 mouse models. This was defined by the number of astrocytes responding via phagocytosis and by the average number of vesicles formed per cell. GFP-LC3 was found to increasingly localize to phagocytic vesicles over a 20-min imaging period, but not in HD mice, suggesting the involvement of LC3 in astrocyte phagocytosis. CONCLUSION: We demonstrate a progressive decrease in LC3-associated phagocytosis in HD mouse striatal astrocytes.


Asunto(s)
Enfermedad de Huntington , Animales , Astrocitos/patología , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Fagocitosis
2.
PLoS One ; 13(4): e0196153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29708987

RESUMEN

This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane). In addition to the presence (or lack) of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Fagocitos/metabolismo , Fagocitosis/fisiología , Animales , Astrocitos/patología , Astrocitos/efectos de la radiación , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Rayos Láser/efectos adversos , Ratones , Neuronas/patología , Neuronas/efectos de la radiación , Fagocitos/patología , Fagocitos/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA