Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 50(D1): D701-D709, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634810

RESUMEN

Signaling networks represent the molecular mechanisms controlling a cell's response to various internal or external stimuli. Most currently available signaling databases contain only a part of the complex network of intertwining pathways, leaving out key interactions or processes. Hence, we have developed SignaLink3 (http://signalink.org/), a value-added knowledge-base that provides manually curated data on signaling pathways and integrated data from several types of databases (interaction, regulation, localisation, disease, etc.) for humans, and three major animal model organisms. SignaLink3 contains over 400 000 newly added human protein-protein interactions resulting in a total of 700 000 interactions for Homo sapiens, making it one of the largest integrated signaling network resources. Next to H. sapiens, SignaLink3 is the only current signaling network resource to provide regulatory information for the model species Caenorhabditis elegans and Danio rerio, and the largest resource for Drosophila melanogaster. Compared to previous versions, we have integrated gene expression data as well as subcellular localization of the interactors, therefore uniquely allowing tissue-, or compartment-specific pathway interaction analysis to create more accurate models. Data is freely available for download in widely used formats, including CSV, PSI-MI TAB or SQL.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Animales , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Humanos , Pez Cebra/genética
2.
Nat Struct Mol Biol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918639

RESUMEN

Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.

3.
Front Cell Dev Biol ; 8: 373, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548116

RESUMEN

Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.

4.
PLoS One ; 14(5): e0216987, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31091274

RESUMEN

Chronic pressure overload due to aortic valve stenosis leads to pathological cardiac hypertrophy and heart failure. Hypertrophy is accompanied by an increase in myocyte surface area, which requires a proportional increase in the number of cell-cell and cell-matrix contacts to withstand enhanced workload. In a proteomic analysis we identified nerve injury-induced protein 1 (Ninjurin1), a 16kDa transmembrane cell-surface protein involved in cell adhesion and nerve repair, to be increased in hypertrophic hearts from patients with aortic stenosis. We hypothesised that Ninjurin1 is involved in myocyte hypertrophy. We analyzed cardiac biopsies from aortic-stenosis patients and control patients undergoing elective heart surgery. We studied cardiac hypertrophy in mice after transverse aortic constriction and angiotensin II infusions, and performed mechanistic analyses in cultured myocytes. We assessed the physiological role of ninjurin1 in zebrafish during heart and skeletal muscle development. Ninjurin1 was increased in hearts of aortic stenosis patients, compared to controls, as well as in hearts from mice with cardiac hypertrophy. Besides the 16kDa Ninjurin1 (Ninjurin1-16) we detected a 24kDa variant of Ninjurin1 (Ninjurin1-24), which was predominantly expressed during myocyte hypertrophy. We disclosed that the higher molecular weight of Ninjurin1-24 was caused by N-glycosylation. Ninjurin1-16 was contained in the cytoplasm of myocytes where it colocalized with stress-fibers. In contrast, Ninjurin1-24 was localized at myocyte membranes. Gain and loss-of-function experiments showed that Ninjurin1-24 plays a role in myocyte hypertrophy and myogenic differentiation in vitro. Reduced levels of ninjurin1 impaired cardiac and skeletal muscle development in zebrafish. We conclude that Ninjurin1 contributes to myocyte growth and differentiation, and that these effects are mainly mediated by N-glycosylated Ninjurin1-24.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Cardiomegalia/genética , Moléculas de Adhesión Celular Neuronal/genética , Músculo Estriado/crecimiento & desarrollo , Factores de Crecimiento Nervioso/genética , Animales , Estenosis de la Válvula Aórtica/patología , Cardiomegalia/patología , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Mutación con Pérdida de Función/genética , Masculino , Ratones , Desarrollo de Músculos/genética , Músculo Estriado/metabolismo , Músculo Estriado/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal/genética , Pez Cebra
5.
Zebrafish ; 13(6): 541-544, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27097230

RESUMEN

Understanding living systems requires an in-depth knowledge of the signaling networks that drive cellular homeostasis, regulate intercellular communication, and contribute to cell fates during development. Several resources exist to provide high-throughput data sets or manually curated interaction information from human or invertebrate model organisms. We previously developed SignaLink, a uniformly curated, multi-layered signaling resource containing information for human and for the model organisms nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster. Until now, the use of the SignaLink database for zebrafish pathway analysis was limited. To overcome this limitation, we created SignaFish ( http://signafish.org ), a fish-specific signaling resource, built using the concept of SignaLink. SignaFish contains more than 200 curation-based signaling interactions, 132 further interactions listed in other resources, and it also lists potential miRNA-based regulatory connections for seven major signaling pathways. From the SignaFish website, users can reach other web resources, such as ZFIN. SignaFish provides signaling or signaling-related interactions that can be examined for each gene or downloaded for each signaling pathway. We believe that the SignaFish resource will serve as a novel navigating point for experimental design and evaluation for the zebrafish community and for researchers focusing on nonmodel fish species, such as cyclids.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes , Transducción de Señal , Pez Cebra/genética , Animales , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA