Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(20): 9508-9514, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844301

RESUMEN

Bilayer graphene (BLG) was recently shown to host a band-inverted phase with unconventional topology emerging from the Ising-type spin-orbit interaction (SOI) induced by the proximity of transition metal dichalcogenides with large intrinsic SOI. Here, we report the stabilization of this band-inverted phase in BLG symmetrically encapsulated in tungsten diselenide (WSe2) via hydrostatic pressure. Our observations from low temperature transport measurements are consistent with a single particle model with induced Ising SOI of opposite sign on the two graphene layers. To confirm the strengthening of the inverted phase, we present thermal activation measurements and show that the SOI-induced band gap increases by more than 100% due to the applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied magnetic field, which further confirms the enhancement of SOI with pressure.

2.
Nano Lett ; 21(19): 7929-7937, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34538054

RESUMEN

Coupling individual atoms fundamentally changes the state of matter: electrons bound to atomic cores become delocalized turning an insulating state to a metallic one. A chain of atoms could lead to more exotic states if the tunneling takes place via the superconducting vacuum and can induce topologically protected excitations like Majorana or parafermions. Although coupling a single atom to a superconductor is well studied, the hybridization of two sites with individual tunability was not reported yet. The peculiar vacuum of the Bardeen-Cooper-Schrieffer (BCS) condensate opens the way to annihilate or generate two electrons from the bulk resulting in a so-called Andreev molecular state. By employing parallel nanowires with an Al shell, two artificial atoms were created at a minimal distance with an epitaxial superconducting link between. Hybridization via the BCS vacuum was observed and the spectrum of an Andreev molecule as a function of level positions was explored for the first time.

3.
Nano Lett ; 21(20): 8777-8784, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34662136

RESUMEN

Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which gave a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing of the Fermi level and hence the electron density and also allows tuning of the interlayer potential, giving further control over band gaps. Here, we demonstrate that by application of hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically nontrivial band gap opens at the charge neutrality point at zero displacement field.

4.
Nano Lett ; 21(22): 9684-9690, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34726405

RESUMEN

Gate-controlled supercurrent (GCS) in superconducting nanobridges has recently attracted attention as a means to create superconducting switches. Despite the clear advantages for applications, the microscopic mechanism of this effect is still under debate. In this work, we realize GCS for the first time in a highly crystalline superconductor epitaxially grown on an InAs nanowire. We show that the supercurrent in the epitaxial Al layer can be switched to the normal state by applying ≃±23 V on a bottom gate insulated from the nanowire by a crystalline hBN layer. Our extensive study of the temperature and magnetic field dependencies suggests that the electric field is unlikely to be the origin of GCS in our device. Though hot electron injection alone cannot explain our experimental findings, a very recent non-equilibrium phonons based picture is compatible with most of our results.

5.
Nano Lett ; 20(7): 4782-4791, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32511931

RESUMEN

Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Because of its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits.

6.
ACS Nano ; 17(6): 5528-5535, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36912466

RESUMEN

Understanding the microscopic origin of the gate-controlled supercurrent (GCS) in superconducting nanobridges is crucial for engineering superconducting switches suitable for a variety of electronic applications. The origin of GCS is controversial, and various mechanisms have been proposed to explain it. In this work, we have investigated the GCS in a Ta layer deposited on the surface of InAs nanowires. Comparison between switching current distributions at opposite gate polarities and between the gate dependence of two opposite side gates with different nanowire-gate spacings shows that the GCS is determined by the power dissipated by the gate leakage. We also found a substantial difference between the influence of the gate and elevated bath temperature on the magnetic field dependence of the supercurrent. Detailed analysis of the switching dynamics at high gate voltages shows that the device is driven into the multiple phase slips regime by high-energy fluctuations arising from the leakage current.

7.
Nat Commun ; 11(1): 1834, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286260

RESUMEN

Various promising qubit concepts have been put forward recently based on engineered superconductor subgap states like Andreev bound states, Majorana zero modes or the Yu-Shiba-Rusinov (Shiba) states. The coupling of these subgap states via a superconductor strongly depends on their spatial extension and is an essential next step for future quantum technologies. Here we investigate the spatial extension of a Shiba state in a semiconductor quantum dot coupled to a superconductor. With detailed transport measurements and numerical renormalization group calculations we find a remarkable more than 50 nm extension of the zero energy Shiba state, much larger than the one observed in very recent scanning tunneling microscopy measurements. Moreover, we demonstrate that its spatial extension increases substantially in a magnetic field.

8.
Beilstein J Nanotechnol ; 10: 363-378, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800576

RESUMEN

Hybrid devices combining quantum dots with superconductors are important building blocks of conventional and topological quantum-information experiments. A requirement for the success of such experiments is to understand the various tunneling-induced non-local interaction mechanisms that are present in the devices, namely crossed Andreev reflection, elastic co-tunneling, and direct interdot tunneling. Here, we provide a theoretical study of a simple device that consists of two quantum dots and a superconductor tunnel-coupled to the dots, often called a Cooper-pair splitter. We study the three special cases where one of the three non-local mechanisms dominates, and calculate measurable ground-state properties, as well as the zero-bias and finite-bias differential conductance characterizing electron transport through this device. We describe how each non-local mechanism controls the measurable quantities, and thereby find experimental fingerprints that allow one to identify and quantify the dominant non-local mechanism using experimental data. Finally, we study the triplet blockade effect and the associated negative differential conductance in the Cooper-pair splitter, and show that they can arise regardless of the nature of the dominant non-local coupling mechanism. Our results should facilitate the characterization of hybrid devices, and their optimization for various quantum-information-related experiments and applications.

9.
Nanoscale ; 8(22): 11480-6, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27198562

RESUMEN

We report on the observation of periodic conductance oscillations near quantum Hall plateaus in suspended graphene nanoribbons. They are attributed to single quantum dots that are formed in the narrowest part of the ribbon, in the valleys and hills of a disorder potential. In a wide flake with two gates, a double-dot system's signature has been observed. Electrostatic confinement is enabled in single-layer graphene due to the gaps that are formed between the Landau levels, suggesting a way to create gate-defined quantum dots that can be accessed with quantum Hall edge states.

10.
Nanoscale ; 8(47): 19910-19916, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27878177

RESUMEN

The formation of quantum Hall channels inside the bulk of graphene is studied using various contact and gate geometries. p-n junctions are created along the longitudinal direction of samples, and enhanced conductance is observed in the case of bipolar doping due to the new conducting channels formed in the bulk, whose position, propagating direction and, in one geometry, coupling to electrodes are determined by the gate-controlled filling factor across the device. This effect could be exploited to probe the behavior and interaction of quantum Hall channels protected against uncontrolled scattering at the edges.

11.
Nanoscale ; 4(12): 3635-9, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22588537

RESUMEN

We present a proposal for a fully electrically controllable quantum dot based spin current injector. The device consists of a quantum dot that is strongly coupled to a ferromagnetic electrode on one side and weakly coupled to a nonmagnetic electrode on the other side. The presence of the ferromagnetic electrode results in an exchange field that splits the dot level. We show that this exchange-induced splitting can lead to almost full spin polarization of the current flowing through the device. Moreover, we also demonstrate that the sign of polarization can be changed by the gate or the bias voltage within a switching time in the nanosecond range. Thus, the proposed device can operate as an electrically controlled, rapidly switchable spin current source, which can be realized in various state-of-the-art nanostructures.

12.
ACS Nano ; 6(4): 3411-23, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22397391

RESUMEN

The break-junction technique is widely used to measure electronic properties of nanoscale junctions including metal point-contacts and single-molecule junctions. In these measurements, conductance is measured as a function of electrode displacement yielding data that is analyzed by constructing conductance histograms to determine the most frequently observed conductance values in the nanoscale junctions. However much of the rich physics in these measurements is lost in this simple analysis technique. Conductance histograms cannot be used to study the statistical relation of distinct junction configurations, to distinguish structurally different configurations that have similar conductance values, or to obtain information on the relation between conductance and junction elongation. Here, we give a detailed introduction to a novel statistical analysis method based on the two-dimensional cross-correlation histogram (2DCH) analysis of conductance traces and show that this method provides new information about the relation of different junction configurations that occur during the formation and evolution of metal and single-molecule junctions. We first illustrate the different types of correlation effects by using simulated conductance traces. We then apply this analysis method to several different experimental examples. We show from break-junction measurements of different metal point-contacts that in aluminum, the first conductance histogram peak corresponds to two different junction structures. In tantalum, we identify the frequent absence of adhesive instability. We show that conductance plateaus shift in a correlated manner in iron and vanadium junctions. Finally, we highlight the applicability of the correlation analysis to single-molecule platinum-CO-platinum and gold-4,4'-bipyridine-gold junctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA