Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nucleic Acids Res ; 48(3): 1406-1422, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863586

RESUMEN

Recent advances in gene editing have been enabled by programmable nucleases such as transcription activator-like effector nucleases (TALENs) and CRISPR-Cas9. However, several open questions remain regarding the molecular machinery in these systems, including fundamental search and binding behavior as well as role of off-target binding and specificity. In order to achieve efficient and specific cleavage at target sites, a high degree of target site discrimination must be demonstrated for gene editing applications. In this work, we studied the binding affinity and specificity for a series of TALE proteins under a variety of solution conditions using in vitro fluorescence methods and molecular dynamics (MD) simulations. Remarkably, we identified that TALEs demonstrate high sequence specificity only upon addition of small amounts of certain divalent cations (Mg2+, Ca2+). However, under purely monovalent salt conditions (K+, Na+), TALEs bind to specific and non-specific DNA with nearly equal affinity. Divalent cations preferentially bind to DNA over monovalent cations, which attenuates non-specific interactions between TALEs and DNA and further stabilizes specific interactions. Overall, these results uncover new mechanistic insights into the binding action of TALEs and further provide potential avenues for engineering and application of TALE- or TALEN-based systems for genome editing and regulation.


Asunto(s)
Calcio/química , Cationes Bivalentes/química , ADN/química , Magnesio/química , Nucleasas de los Efectores Tipo Activadores de la Transcripción/química , Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/química , Edición Génica , Potasio/química , Unión Proteica , Sodio/química , Soluciones/química , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
2.
Nat Chem Biol ; 12(10): 831-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27526029

RESUMEN

Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins used extensively for gene editing. Despite recent progress, however, little is known about their sequence search mechanism. Here, we use single-molecule experiments to study TALE search along DNA. Our results show that TALEs utilize a rotationally decoupled mechanism for nonspecific search, despite remaining associated with DNA templates during the search process. Our results suggest that the protein helical structure enables TALEs to adopt a loosely wrapped conformation around DNA templates during nonspecific search, facilitating rapid one-dimensional (1D) diffusion under a range of solution conditions. Furthermore, this model is consistent with a previously reported two-state mechanism for TALE search that allows these proteins to overcome the search speed-stability paradox. Taken together, our results suggest that TALE search is unique among the broad class of sequence-specific DNA-binding proteins and supports efficient 1D search along DNA.


Asunto(s)
ADN/metabolismo , Rotación , Efectores Tipo Activadores de la Transcripción/metabolismo , ADN/química , Modelos Moleculares , Conformación Proteica
3.
Annu Rev Chem Biomol Eng ; 8: 577-597, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28489428

RESUMEN

Exciting new advances in genome engineering have unlocked the potential to radically alter the treatment of human disease. In this review, we discuss the application of single-molecule techniques to uncover the mechanisms behind two premier classes of genome editing proteins: transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas). These technologies have facilitated a striking number of gene editing applications in a variety of organisms; however, we are only beginning to understand the molecular mechanisms governing the DNA editing properties of these systems. Here, we discuss the DNA search and recognition process for TALEs and Cas9 that have been revealed by recent single-molecule experiments.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Imagen Individual de Molécula/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/análisis , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/análisis , ADN/genética , ADN/metabolismo , Genoma , Humanos , Imagen Óptica/métodos , Espectrometría de Fluorescencia/métodos , Análisis Espectral/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
4.
Nat Commun ; 6: 7277, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26027871

RESUMEN

Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process-a search state and a recognition state-facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Sitios de Unión , Difusión , Escherichia coli , Polarización de Fluorescencia , Microscopía Fluorescente , Unión Proteica , Streptomyces , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA