Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(21): 11317-11328, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748902

RESUMEN

Interfacial solar steam generation (ISSG) has recently received much attention as a low-carbon-footprint and high-energy-efficient strategy for seawater desalination and wastewater treatment. However, achieving the goals of a high evaporation rate, ecofriendliness, and high tolerance to salt ions in brine remains a bottleneck. Herein, a novel hydrogel-based evaporator for effective solar desalination was synthesized on the basis of sodium alginate (SA) and carboxymethyl chitosan (CMCS) incorporating a carbon nanotube (CNT)-wrapped melamine sponge (MS) through a simple dipping-drying-cross-linking process. The hydrogel-based evaporator reaches a high evaporation rate of 2.18 kg m-2 h-1 in 3.5 wt % brine under 1 sun irradiation. Furthermore, it demonstrated excellent salt ion rejection in high-concentration salt water. Simultaneously, it exhibits excellent purification functionality toward heavy metals and organic dyes. This study provides a simple and efficient strategy for seawater desalination and wastewater treatment.

2.
ACS Appl Mater Interfaces ; 14(22): 26303-26313, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35615808

RESUMEN

Interfacial solar steam generation technology has been considered as one of the most promising methods for seawater desalination. However, in practical applications, salt precipitation on the evaporation surface reduces the evaporation rate and impairs long-term stability. Herein, a dual-layer hydrogel-based evaporator that contains a microchannel-structured water-supplying layer and a nanoporous light-absorbing layer was synthesized via sol-gel transition and "hot-ice" template methods. Contributed by the designed structure-induced accelerated salt ion exchange, the hemispherical dual-layer hydrogel evaporator showed excellent salt formation resistance property, as well as a high evaporation rate reaching 2.03 kg m-2 h-1 even under high brine concentration conditions. Furthermore, the hydrogel-based evaporator also demonstrated excellent ion rejection, high/low pH tolerance, and excellent purification properties toward heavy metals and organic dyes. It is believed that this type of dual-layer multichannel evaporator is promising to be used in seawater desalination, water pollution treatment, and other environmental remediation-related applications.

3.
Polymers (Basel) ; 13(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917806

RESUMEN

One type of low-cost and eco-friendly organic‒inorganic superabsorbent composite (SAPC) was synthesized by free radical polymerization of acrylic acid (AA), starch (ST), sodium alginate (SA) and kaolin (KL) in aqueous solution. The structure and morphology of the SAPC were characterized by Fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The influence of different reaction conditions on water absorption of SAPC, i.e., SA and KL contents, AA neutralization degree (ND), potassium persulfate (KPS) and N, N'-methylenebisacrylamide (MBA) loading were systematically studied. Under the optimal synthesis conditions, very high water absorption of 1200 g/g was achieved. The swelling kinetic mechanism of SAPC was studied by pseudo-second order swelling kinetics model and Ritger‒Peppas model. The performances of SAPC under different environments were tested and results revealed that this new SAPC had excellent swelling capacity, high water retention, good salt tolerance in monovalent salt solution (NaCl solution) and good pH tolerance between 4 and 10.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA