Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 761, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696727

RESUMEN

BACKGROUND: Xyloglucan endotransglycosylase/hydrolases (XTH) can disrupt and reconnect the xyloglucan chains, modify the cellulose-xyloglucan complex structure in the cell wall to reconstruct the cell wall. Previous studies have reported that XTH plays a key role in the aluminum (Al) tolerance of tea plants (Camellia sinensis), which is a typical plant that accumulates Al and fluoride (F), but its role in F resistance has not been reported. RESULTS: Here, 14 CsXTH genes were identified from C. sinensis and named as CsXTH1-14. The phylogenetic analysis revealed that CsXTH members were divided into 3 subclasses, and conserved motif analysis showed that all these members included catalytic active region. Furthermore, the expressions of all CsXTH genes showed tissue-specific and were regulated by Al3+ and F- treatments. CsXTH1, CsXTH4, CsXTH6-8 and CsXTH11-14 were up-regulated under Al3+ treatments; CsXTH1-10 and CsXTH12-14 responded to different concentrations of F- treatments. The content of xyloglucan oligosaccharide determined by immunofluorescence labeling increased to the highest level at low concentrations of Al3+ or F- treatments (0.4 mM Al3+ or 8 mg/L F-), accompanying by the activity of XET (Xyloglucan endotransglucosylase) peaked. CONCLUSION: In conclusion, CsXTH activities were regulated by Al or F via controlling the expressions of CsXTH genes and the content of xyloglucan oligosaccharide in C. sinensis roots was affected by Al or F, which might finally influence the elongation of roots and the growth of plants.


Asunto(s)
Aluminio , Camellia sinensis , Fluoruros , Glicosiltransferasas/genética , Hidrolasas , Filogenia
2.
Plant Biotechnol (Tokyo) ; 35(4): 313-324, 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31892818

RESUMEN

MADS-box transcription factors (TFs) are involved in a variety of processes in flowering plants ranging from root growth to flower and fruit development. However, studies of the tolerance-related functions of MADS-box genes are very limited, and to date no such studies have been conducted on Camellia sinensis. To gain insight into the functions of genes of this family and to elucidate the role they may play in tissue development and Al and F response, we identified 45 MADS-box genes through transcriptomic analysis of C. sinensis. Phylogenetic analysis of these CsMADS-box genes, along with their homologues in Arabidopsis thaliana, enabled us to classify them into distinct groups, including: M-type (Mα), MIKC* and MIKCc (which contains the SOC1, AGL12, AGL32, SEP, ANR1, SVP, and FLC subgroups). Conserved motif analysis of the CsMADS-box proteins revealed diverse motif compositions indicating a complex evolutionary relationship. Finally, we examined the expression patterns of CsMADS-box genes in various tissues and under different Al and F concentration treatments. Our qPCR results showed that these CsMADS-box genes were involved in Al and F accumulation and root growth in C. sinensis. These findings lay the foundation for future research on the function of CsMADS-box genes and their role in response to Al and F accumulation in root tissues.

3.
Plant Physiol Biochem ; 119: 265-274, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28917145

RESUMEN

Tea plant (Camellia sinensis (O.) Kuntze) can survive from high levels of aluminum (Al) in strongly acidic soils. However, the mechanism driving its tolerance to Al, the predominant factor limiting plant growth in acid condition, is still not fully understood. Here, two-year-old rooted cuttings of C. sinensis cultivar 'Longjingchangye' were used for Al resistance experiments. We found that the tea plants grew better in the presence of 0.4 mM Al than those grew under lower concentration of Al treatments (0 and 0.1 mM) as well as higher levels treatment (2 and 4 mM), confirming that appropriate Al increased tea plant growth. Hematoxylin staining assay showed that the apical region was the main accumulator in tea plant root. Subsequently, immunolocalization of pectins in the root tip cell wall showed a rise in low-methyl-ester pectin levels and a reduction of high-methyl-ester pectin content with the increasing Al concentration of treatments. Furthermore, we observed the increased expressions of C. sinensis pectin methylesterase (CsPME) genes along with the increasing de-esterified pectin levels during response to Al treatments. Additionally, the levels of organic acids increased steadily after treatment with 0.1, 0.4 or 2 mM Al, while they dropped after treatment with 4 mM Al. The organic acids secretion from root followed a similar trend. Similarly, a gradual increase in malate dehydrogenase (MDH), citrate synthase (CS) and glycolate oxidase (GO) enzyme activities and relevant metabolic genes expression were detected after the treatment of 0.1, 0.4 or 2 mM Al, while a sharp decrease was resulted from treatment with 4 mM Al. These results confirm that both pectin methylesterases and organic acids contribute to Al tolerance in C. sinensis.


Asunto(s)
Aluminio/farmacología , Camellia sinensis/metabolismo , Meristema/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Esterificación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA