Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38527807

RESUMEN

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Atención/fisiología , Adulto Joven , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Memoria a Largo Plazo/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/fisiología , Memoria a Corto Plazo/fisiología
2.
Mol Psychiatry ; 29(2): 484-495, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38102486

RESUMEN

Parent-child transmission of suicidal behaviors has been extensively studied, but the investigation of a three-generation family suicide risk paradigm remains limited. In this study, we aimed to explore the behavioral and brain signatures of multi-generational family history of suicidal behaviors (FHoS) in preadolescents, utilizing a longitudinal design and the dataset from Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®), which comprised 4 years of data and includes a total of 9,653 preadolescents. Our findings revealed that multi-generational FHoS was significantly associated with an increased risk of problematic behaviors and suicidal behaviors (suicide ideation and suicide attempt) in offspring. Interestingly, the problematic behaviors were further identified as a mediator in the multi-generational transmission of suicidal behaviors. Additionally, we observed alterations in brain structure within superior temporal gyrus (STG), precentral/postcentral cortex, posterior parietal cortex (PPC), cingulate cortex (CC), and planum temporale (PT), as well as disrupted functional connectivity of default mode network (DMN), ventral attention network (VAN), dorsal attention network (DAN), fronto-parietal network (FPN), and cingulo-opercular network (CON) among preadolescents with FHoS. These results provide compelling longitudinal evidence at the population level, highlighting the associations between multi-generational FHoS and maladaptive behavioral and neurodevelopmental outcomes in offspring. These findings underscore the need for early preventive measures aimed at mitigating the familial transmission of suicide risk and reducing the global burden of deaths among children and adolescents.


Asunto(s)
Encéfalo , Ideación Suicida , Intento de Suicidio , Humanos , Femenino , Masculino , Niño , Adolescente , Intento de Suicidio/psicología , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Suicidio/psicología , Factores de Riesgo
3.
Proc Natl Acad Sci U S A ; 119(33): e2110416119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939696

RESUMEN

Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.


Asunto(s)
Corteza Cerebral , Vías Nerviosas , Caracteres Sexuales , Adolescente , Adulto , Mapeo Encefálico , Corteza Cerebral/fisiología , Niño , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Adulto Joven
4.
Neuroimage ; 298: 120804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173695

RESUMEN

Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.


Asunto(s)
Cognición , Conectoma , Aprendizaje Automático , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Cognición/fisiología , Conectoma/métodos , Masculino , Adulto , Femenino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto Joven , Memoria a Corto Plazo/fisiología
5.
Brain ; 146(4): 1714-1727, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36189936

RESUMEN

Glioblastoma is characterized by diffuse infiltration into the surrounding tissue along white matter tracts. Identifying the invisible tumour invasion beyond focal lesion promises more effective treatment, which remains a significant challenge. It is increasingly accepted that glioblastoma could widely affect brain structure and function, and further lead to reorganization of neural connectivity. Quantifying neural connectivity in glioblastoma may provide a valuable tool for identifying tumour invasion. Here we propose an approach to systematically identify tumour invasion by quantifying the structural connectome in glioblastoma patients. We first recruit two independent prospective glioblastoma cohorts: the discovery cohort with 117 patients and validation cohort with 42 patients. Next, we use diffusion MRI of healthy subjects to construct tractography templates indicating white matter connection pathways between brain regions. Next, we construct fractional anisotropy skeletons from diffusion MRI using an improved voxel projection approach based on the tract-based spatial statistics, where the strengths of white matter connection and brain regions are estimated. To quantify the disrupted connectome, we calculate the deviation of the connectome strengths of patients from that of the age-matched healthy controls. We then categorize the disruption into regional disruptions on the basis of the relative location of connectome to focal lesions. We also characterize the topological properties of the patient connectome based on the graph theory. Finally, we investigate the clinical, cognitive and prognostic significance of connectome metrics using Pearson correlation test, mediation test and survival models. Our results show that the connectome disruptions in glioblastoma patients are widespread in the normal-appearing brain beyond focal lesions, associated with lower preoperative performance (P < 0.001), impaired cognitive function (P < 0.001) and worse survival (overall survival: hazard ratio = 1.46, P = 0.049; progression-free survival: hazard ratio = 1.49, P = 0.019). Additionally, these distant disruptions mediate the effect on topological alterations of the connectome (mediation effect: clustering coefficient -0.017, P < 0.001, characteristic path length 0.17, P = 0.008). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of connectivity reorganization, where the increased neural connectivity is associated with better overall survival (log-rank P = 0.005). In conclusion, our connectome approach could reveal and quantify the glioblastoma invasion distant from the focal lesion and invisible on the conventional MRI. The structural disruptions in the normal-appearing brain were associated with the topological alteration of the brain and could indicate treatment target. Our approach promises to aid more accurate patient stratification and more precise treatment planning.


Asunto(s)
Conectoma , Glioblastoma , Sustancia Blanca , Humanos , Conectoma/métodos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Encéfalo/patología , Sustancia Blanca/patología
6.
Cereb Cortex ; 33(8): 4305-4318, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36066439

RESUMEN

Auditory language comprehension recruits cortical regions that are both close to sensory-motor landmarks (supporting auditory and motor features) and far from these landmarks (supporting word meaning). We investigated whether the responsiveness of these regions in task-based functional MRI is related to individual differences in their physical distance to primary sensorimotor landmarks. Parcels in the auditory network, that were equally responsive across story and math tasks, showed stronger activation in individuals who had less distance between these parcels and transverse temporal sulcus, in line with the predictions of the "tethering hypothesis," which suggests that greater proximity to input regions might increase the fidelity of sensory processing. Conversely, language and default mode parcels, which were more active for the story task, showed positive correlations between individual differences in activation and sensory-motor distance from primary sensory-motor landmarks, consistent with the view that physical separation from sensory-motor inputs supports aspects of cognition that draw on semantic memory. These results demonstrate that distance from sensorimotor regions provides an organizing principle of functional differentiation within the cortex. The relationship between activation and geodesic distance to sensory-motor landmarks is in opposite directions for cortical regions that are proximal to the heteromodal (DMN and language network) and unimodal ends of the principal gradient of intrinsic connectivity.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Distanciamiento Físico , Imagen por Resonancia Magnética/métodos , Lenguaje
7.
Cereb Cortex ; 33(11): 6803-6817, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36657772

RESUMEN

Individualized cortical network topography (ICNT) varies between people and exhibits great variability in the association networks in the human brain. However, these findings were mainly discovered in Western populations. It remains unclear whether and how ICNT is shaped by the non-Western populations. Here, we leveraged a multisession hierarchical Bayesian model to define individualized functional networks in White American and Han Chinese populations with data from both US and Chinese Human Connectome Projects. We found that both the size and spatial topography of individualized functional networks differed between White American and Han Chinese groups, especially in the heteromodal association cortex (including the ventral attention, control, language, dorsal attention, and default mode networks). Employing a support vector machine, we then demonstrated that ethnicity-related ICNT diversity can be used to identify an individual's ethnicity with high accuracy (74%, pperm < 0.0001), with heteromodal networks contributing most to the classification. This finding was further validated through mass-univariate analyses with generalized additive models. Moreover, we reveal that the spatial heterogeneity of ethnic diversity in ICNT correlated with fundamental properties of cortical organization, including evolutionary cortical expansion, brain myelination, and cerebral blood flow. Altogether, this case study highlights a need for more globally diverse and publicly available neuroimaging datasets.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen , Conectoma/métodos , Red Nerviosa/fisiología
8.
BMC Med ; 21(1): 141, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046279

RESUMEN

BACKGROUND: Although both peer victimization and bullying perpetration negatively impact preadolescents' development, the underlying neurobiological mechanism of this adverse relationship remains unclear. Besides, the specific psycho-cognitive patterns of different bullying subtypes also need further exploration, warranting large-scale studies on both general bullying and specific bullying subtypes. METHODS: We adopted a retrospective methodology by utilizing the data from the Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®) cohort collected between July 2018 and January 2021. Participants were preadolescents aged from 10 to 13 years. The main purpose of our study is to examine the associations of general and specific peer victimization/bullying perpetration with preadolescents' (1) suicidality and non-suicidal self-injury; (2) executive function and memory, including attention inhibition, processing speed, emotion working memory, and episodic memory; (3) brain structure abnormalities; and (4) brain network disturbances. Age, sex, race/ethnicity, body mass index (BMI), socioeconomic status (SES), and data acquisition site were included as covariates. RESULTS: A total of 5819 participants aged from 10 to 13 years were included in this study. Higher risks of suicide ideation, suicide attempt, and non-suicidal self-injury were found to be associated with both bullying perpetration/peer victimization and their subtypes (i.e., overt, relational, and reputational). Meanwhile, poor episodic memory was shown to be associated with general victimization. As for perpetration, across all four tasks, significant positive associations of relational perpetration with executive function and episodic memory consistently manifested, yet opposite patterns were shown in overt perpetration. Notably, distinct psycho-cognitive patterns were shown among different subtypes. Additionally, victimization was associated with structural brain abnormalities in the bilateral paracentral and posterior cingulate cortex. Furthermore, victimization was associated with brain network disturbances between default mode network and dorsal attention network, between default mode network and fronto-parietal network, and ventral attention network related connectivities, including default mode network, dorsal attention network, cingulo-opercular network, cingulo-parietal network, and sensorimotor hand network. Perpetration was also associated with brain network disturbances between the attention network and the sensorimotor hand network. CONCLUSIONS: Our findings offered new evidence for the literature landscape by emphasizing the associations of bullying experiences with preadolescents' clinical characteristics and cognitive functions, while distinctive psycho-cognitive patterns were shown among different subtypes. Additionally, there is evidence that these associations are related to neurocognitive brain networks involved in attention control and episodic retrieval. Given our findings, future interventions targeting ameliorating the deleterious effect of bullying experiences on preadolescents should consider their subtypes and utilize an ecosystemic approach involving all responsible parties.


Asunto(s)
Acoso Escolar , Víctimas de Crimen , Suicidio , Adolescente , Humanos , Niño , Estudios Retrospectivos , Acoso Escolar/psicología , Víctimas de Crimen/psicología , Encéfalo
9.
Proc Natl Acad Sci U S A ; 117(1): 771-778, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31874926

RESUMEN

The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure-function coupling using diffusion-weighted imaging and n-back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure-function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure-function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data (n = 294). Moreover, structure-function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.


Asunto(s)
Desarrollo del Adolescente/fisiología , Corteza Cerebral/crecimiento & desarrollo , Cognición/fisiología , Función Ejecutiva/fisiología , Red Nerviosa/fisiología , Adolescente , Corteza Cerebral/diagnóstico por imagen , Niño , Conectoma , Estudios Transversales , Imagen de Difusión Tensora , Femenino , Humanos , Estudios Longitudinales , Masculino , Análisis Espacial , Adulto Joven
10.
Neuroimage ; 238: 118224, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34087364

RESUMEN

The dynamical organization of brain networks is essential to support human cognition and emotion for rapid adaption to ever-changing environment. As the core nodes of emotion-related brain circuitry, the basolateral amygdala (BLA) and centromedial amygdala (CMA) as two major amygdalar nuclei, are recognized to play distinct roles in affective functions and internal states, via their unique connections with cortical and subcortical structures in rodents. However, little is known how the dynamical organization of emotion-related brain circuitry reflects internal autonomic responses in humans. Using resting-state functional magnetic resonance imaging (fMRI) with K-means clustering approach in a total of 79 young healthy individuals (cohort 1: 42; cohort 2: 37), we identified two distinct states of BLA- and CMA-based intrinsic connectivity patterns, with one state (integration) showing generally stronger BLA- and CMA-based intrinsic connectivity with multiple brain networks, while the other (segregation) exhibiting weaker yet dissociable connectivity patterns. In an independent cohort 2 of fMRI data with concurrent recording of skin conductance, we replicated two similar dynamic states and further found higher skin conductance level in the integration than segregation state. Moreover, machine learning-based Elastic-net regression analyses revealed that time-varying BLA and CMA intrinsic connectivity with distinct network configurations yield higher predictive values for spontaneous fluctuations of skin conductance level in the integration than segregation state. Our findings highlight dynamic functional organization of emotion-related amygdala nuclei circuits and networks and its links to spontaneous autonomic arousal in humans.


Asunto(s)
Nivel de Alerta/fisiología , Complejo Nuclear Basolateral/fisiología , Mapeo Encefálico/métodos , Núcleo Amigdalino Central/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Complejo Nuclear Basolateral/diagnóstico por imagen , Núcleo Amigdalino Central/diagnóstico por imagen , Conectoma/métodos , Emociones/fisiología , Femenino , Respuesta Galvánica de la Piel , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Masculino , Descanso/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA