Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Expert Rev Proteomics ; 15(3): 259-275, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29343144

RESUMEN

INTRODUCTION: Cancer is the second most common cause of death worldwide and its heterogeneity complicates therapy. Standard cytotoxic regiments disrupt rapidly dividing cells, regardless of their neoplastic status. The introduction of less toxic targeted therapies has partially contributed to the observed decrease in cancer-related mortality. Cell-surface proteins represent attractive targets for therapy, due to their easily-accessible localization and their involvement in essential signaling pathways, often dysregulated in cancer. Despite their clinical appeal, cell-surface proteins are often underrepresented in standard proteomic data sets, due to their poor solubility and lower expression levels compared to intracellular proteins. Areas covered: This review will summarize some of the available techniques for enriching the cell-surface proteome, and discuss their advantages, limitations and applicability to clinical sample-testing. Moreover, we discuss currently available strategies for the development of novel targeted therapies in cancer. Expert commentary: The interest in elucidating the cancer-associated surfaceome is growing and will likely benefit from recent advancements in instrument sensitivity, method development, and a growing body of high-quality proteomics databases. Multiomics studies, in combination with functional validations (e.g. dropout screens), and evaluation of the healthy surfaceome, will likely aid in the selection of relevant targets for future therapy development.


Asunto(s)
Antígenos de Neoplasias/química , Biomarcadores de Tumor/química , Terapia Molecular Dirigida/métodos , Proteómica/métodos , Animales , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Humanos , Espectrometría de Masas/métodos
2.
J Immunol ; 188(1): 322-33, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22131336

RESUMEN

Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.


Asunto(s)
Sustitución de Aminoácidos , Pollos/genética , Regiones Determinantes de Complementariedad/genética , Cadenas Pesadas de Inmunoglobulina/genética , Mutación , Animales , Afinidad de Anticuerpos/genética , Camelus/genética , Camelus/inmunología , Pollos/inmunología , Regiones Determinantes de Complementariedad/inmunología , Disulfuros/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Ratones , Estabilidad Proteica , Especificidad de la Especie
3.
Blood Adv ; 8(8): 1869-1879, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38330193

RESUMEN

ABSTRACT: Fc gamma receptor (FcγR) IIIA is an important receptor for immunoglobulin G (IgG) and is involved in immune defense mechanisms as well as tissue destruction in some autoimmune diseases including immune thrombocytopenia (ITP). FcγRIIIA on macrophages can trigger phagocytosis of IgG-sensitized platelets, and prior pilot studies observed blockade of FcγRIIIA increased platelet counts in patients with ITP. Unfortunately, although blockade of FcγRIIIA in patients with ITP increased platelet counts, its engagement by the blocking antibody drove serious adverse inflammatory reactions. These adverse events were postulated to originate from the antibody's Fc and/or bivalent nature. The blockade of human FcγRIIIA in vivo with a monovalent construct lacking an active Fc region has not yet been achieved. To effectively block FcγRIIIA in vivo, we developed a high affinity monovalent single-chain variable fragment (scFv) that can bind and block human FcγRIIIA. This scFv (17C02) was expressed in 3 formats: a monovalent fusion protein with albumin, a 1-armed human IgG1 antibody, and a standard bivalent mouse (IgG2a) antibody. Both monovalent formats were effective in preventing phagocytosis of ITP serum-sensitized human platelets. In vivo studies using FcγR-humanized mice demonstrated that both monovalent therapeutics were also able to increase platelet counts. The monovalent albumin fusion protein did not have adverse event activity as assessed by changes in body temperature, whereas the 1-armed antibody induced some changes in body temperature even though the Fc region function was impaired by the Leu234Ala and Leu235Ala mutations. These data demonstrate that monovalent blockade of human FcγRIIIA in vivo can potentially be a therapeutic strategy for patients with ITP.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Ratones , Animales , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Receptores de IgG/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina G/uso terapéutico , Albúminas/uso terapéutico
4.
J Immunol Methods ; 339(1): 38-46, 2008 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-18760282

RESUMEN

Phage and ribosome display technologies have emerged as important tools in the high-throughput screening of protein pharmaceuticals. However, a challenge created by the implementation of such tools is the need to purify large numbers of proteins for screening. While some assays may be compatible with crude bacterial lysates or periplasmic extracts, many functional assays, particularly cell-based assays, require protein of high purity and concentration. Here we evaluate several methods for small-scale, high-throughput protein purification. From our initial assessment we identified the HIS-Select 96-well filter plate system as the method of choice for further evaluation. This method was optimized and used to produce scFvs that were tested in cell-based functional assays. The behavior of HIS-Select purified scFvs in these assays was found to be similar to scFvs purified using a traditional large-scale 2-step purification method. The HIS-Select method allows high-throughput purification of hundreds of scFvs with yields in the 50-100 microg range, and of sufficient purity to allow evaluation in a cell-based proliferation assay. In addition, the use of a similar 96-well-based method facilitates the purification and subsequent screening of large numbers of IgGs and Fc fusion proteins generated through reformatting of scFv fragments.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Región Variable de Inmunoglobulina/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Escherichia coli/genética , Escherichia coli/inmunología , Femenino , Humanos , Regiones Constantes de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/inmunología , Regiones Constantes de Inmunoglobulina/aislamiento & purificación , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Masculino , Periplasma/genética , Periplasma/inmunología , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/inmunología , Proteínas Periplasmáticas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
5.
J Immunol Res ; 2018: 4089459, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417018

RESUMEN

Lymphocyte costimulation plays a central role in immunology, inflammation, and immunotherapy. The inducible T cell costimulator (ICOS) is expressed on T cells following peptide: MHC engagement with CD28 costimulation. The interaction of ICOS with its sole ligand, the inducible T cell costimulatory ligand (ICOSL; also known as B7-related protein-1), triggers a number of key activities of T cells including differentiation and cytokine production. Suppression of T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity. In this study, we isolated specific anti-ICOSL new antigen receptor domains from a synthetic phage display library and demonstrated their ability to block the ICOS/ICOSL interaction and inhibit T cell proliferation. Anti-mouse ICOSL domains, considered here as surrogates for the use of anti-human ICOSL domains in patient therapy, were tested for efficacy in a collagen-induced mouse model of rheumatoid arthritis where they significantly decreased the inflammation of joints and delayed and reduced overall disease progression and severity.


Asunto(s)
Artritis Experimental/terapia , Artritis Reumatoide/inmunología , Inmunoterapia/métodos , Inflamación/terapia , Receptores de Antígenos de Linfocitos B/uso terapéutico , Anticuerpos de Cadena Única/uso terapéutico , Linfocitos T/efectos de los fármacos , Animales , Artritis Experimental/inmunología , Células CHO , Proliferación Celular , Técnicas de Visualización de Superficie Celular , Cricetulus , Modelos Animales de Enfermedad , Femenino , Humanos , Ligando Coestimulador de Linfocitos T Inducibles/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Inflamación/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos DBA , Unión Proteica , Receptores de Antígenos de Linfocitos B/genética , Anticuerpos de Cadena Única/genética , Linfocitos T/inmunología
6.
Antibodies (Basel) ; 5(1)2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-31557987

RESUMEN

Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (Tm1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate in vivo anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin.

7.
MAbs ; 5(6): 882-95, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23995618

RESUMEN

While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive "hammer-hug" selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and>18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with<2% high molecular weight species present after 7 weeks at 4 °C and viscosity<15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.


Asunto(s)
Anticuerpos Biespecíficos/genética , Regiones Determinantes de Complementariedad/genética , Ingeniería de Proteínas , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Animales , Bacteriófagos/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inyecciones Subcutáneas , Biblioteca de Péptidos , Estabilidad Proteica , Ratas , Anticuerpos de Cadena Única/genética , Temperatura
8.
J Mol Biol ; 388(3): 541-58, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19285987

RESUMEN

Antibodies that neutralize RAGE (receptor for advanced glycation end products)-ligand interactions have potential therapeutic applications in both acute and chronic diseases. We generated XT-M4, a rat anti-RAGE monoclonal antibody that has in vivo efficacy in an acute sepsis model. This antibody was subsequently humanized. To improve the affinity of this antibody for the treatment of chronic indications, we used random and targeted mutagenesis strategies in combination with ribosome and phage-display technologies, respectively, to generate libraries of XT-M4 variants. We identified a panel of single-chain Fv antibody fragments (scFv's) that was improved up to 110-fold in a homogeneous time-resolved fluorescence competition assay against parental XT-M4 immunoglobulin G (IgG). After reformatting to bivalent scFv-Fc fusions and IgGs, we observed similar gains in potency in the same assay. Further analysis of binding kinetics as IgG revealed multiple variants with subnanomolar apparent affinity that was dictated primarily by improvements in the off-rate. All variants also had improved binding to cell surface-expressed human RAGE, and all retained, or had improved, apparent affinity for mouse RAGE. F100bL in V(H) (variable region of the heavy chain) complementarity-determining region 3 (CDR3) was one of a number of key mutations that correlated with affinity improvements and was independently identified by both mutagenesis strategies. Random mutagenesis coupled with ribosome display and high-throughput screening revealed an unexpectedly high level of mutational plasticity across the whole length of the humanized scFv, suggesting greater scope for structural optimization outside of the primary antigen-combining site defined by V(H) CDR3 and V(kappa) CDR3. In summary, our comprehensive mutagenesis approach not only achieved the desired affinity maturation of XT-M4 but also defined multiple mutational hotspots across the antibody sequence, provided an insight into the specificity-determining residues of the antibody paratope, and identified additional sites within the CDR loops where human germ-line amino acids may be introduced without affecting function.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Secuencia de Aminoácidos , Animales , Análisis Mutacional de ADN , Fluorometría , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Pruebas de Neutralización , Ratas , Receptor para Productos Finales de Glicación Avanzada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA