RESUMEN
Orofacial clefts (OFCs) are common, affecting 1:1000 live births. OFCs occur across a phenotypic spectrum - including cleft lip (CL), cleft lip and palate (CLP), or cleft palate (CP) - and can be further subdivided based on laterality, severity, or specific structures affected. Herein we review what is known about the genetic architecture underlying each of these subtypes, considering both shared and subtype-specific risks. While there are more known genetic similarities between CL and CLP than CP, recent research supports both shared and subtype-specific genetic risk factors within and between phenotypic classifications of OFCs. Larger sample sizes and deeper phenotyping data will be of increasing importance for the discovery of novel genetic risk factors for OFCs and various subtypes going forward.
Asunto(s)
Labio Leporino , Fisura del Paladar , Labio Leporino/genética , Fisura del Paladar/genética , Humanos , Fenotipo , Predisposición Genética a la Enfermedad , Factores de RiesgoRESUMEN
As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p = 6.86 [Formula: see text] 10-7). Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known craniofacial enhancer. We then tested whether these variants could alter predicted transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites for 9 transcription factors (TFs), including Pax1 (p = 0.0009), and created binding sites for 23 TFs, including Pax6 (p = 6.12 [Formula: see text] 10-5) and Pax9 (p = 0.0001), which are known to be involved in normal craniofacial development, suggesting a potential mechanism by which these synonymous variants could have a functional impact. Overall, this study indicates that rare genetic variation may contribute to the phenotypic heterogeneity of OFCs and suggests that regulatory variation may also contribute and warrant further investigation in future studies of genetic variants controlling risk to OFC.
Asunto(s)
Labio Leporino , Fisura del Paladar , Niño , Humanos , Labio Leporino/genética , Fisura del Paladar/genética , Alelos , Sitios de Unión , Proteínas de Transporte VesicularRESUMEN
PURPOSE: Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls. METHODS: We evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria. RESULTS: 9.04% of cases and 1.02% of controls had "likely pathogenic" variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were "variants of uncertain significance", occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance. CONCLUSION: These results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.
Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Alelos , Mapeo Cromosómico , Factores Reguladores del Interferón/genéticaRESUMEN
Orofacial clefts (OFCs) are common (1 in 700 births) congenital malformations that include a cleft lip (CL) and cleft lip and palate (CLP). These OFC subtypes are also heterogeneous themselves, with the CL occurring on the left, right, or both sides of the upper lip. Unilateral CL and CLP have a 2:1 bias towards left-sided clefts, suggesting a nonrandom process. Here, we performed a study of left- and right-sided clefts within the CL and CLP subtypes to better understand the genetic factors controlling cleft laterality. We conducted genome-wide modifier analyses by comparing cases that had right unilateral CL (RCL; N = 130), left unilateral CL (LCL; N = 216), right unilateral CLP (RCLP; N = 416), or left unilateral CLP (LCLP; N = 638), and identified a candidate region on 4q28, 400 kb downstream from FAT4, that approached genome-wide significance for LCL versus RCL (p = 8.4 × 10-8 ). Consistent with its potential involvement as a genetic modifier of CL, we found that Fat4 exhibits a specific domain of expression in the mesenchyme of the medial nasal processes that form the median upper lip. Overall, these results suggest that the epidemiological similarities in left- to right-sided clefts in CL and CLP are not reflected in the genetic association results.
Asunto(s)
Cadherinas/genética , Labio Leporino , Fisura del Paladar , Proteínas Supresoras de Tumor/genética , Labio Leporino/epidemiología , Labio Leporino/genética , Fisura del Paladar/genética , HumanosRESUMEN
Mediation models are a set of statistical techniques that investigate the mechanisms that produce an observed relationship between an exposure variable and an outcome variable in order to deduce the extent to which the relationship is influenced by intermediate mediator variables. For a case-control study, the most common mediation analysis strategy employs a counterfactual framework that permits estimation of indirect and direct effects on the odds ratio scale for dichotomous outcomes, assuming either binary or continuous mediators. While this framework has become an important tool for mediation analysis, we demonstrate that we can embed this approach in a unified likelihood framework for mediation analysis in case-control studies that leverages more features of the data (in particular, the relationship between exposure and mediator) to improve efficiency of indirect effect estimates. One important feature of our likelihood approach is that it naturally incorporates cases within the exposure-mediator model to improve efficiency. Our approach does not require knowledge of disease prevalence and can model confounders and exposure-mediator interactions, and is straightforward to implement in standard statistical software. We illustrate our approach using both simulated data and real data from a case-control genetic study of lung cancer.
Asunto(s)
Modelos Estadísticos , Estudios de Casos y Controles , Factores de Confusión Epidemiológicos , Humanos , Funciones de Verosimilitud , Oportunidad RelativaRESUMEN
PURPOSE: Endocrine disrupting compounds (EDCs) have been shown to affect multiple biologic processes especially steroid-hormone processes. We sought to determine differences in DNA methylation exists between women with and without endometriosis following exposure to polybrominated biphenyl (PBB). METHODS: Cross-sectional study of 305 females in the Michigan PBB Registry. DNA was extracted, and DNA methylation was interrogated using the MethylationEPIC BeadChip (Illumina, San Diego, California). Demographic data was analyzed using Chi-squared and T tests. Linear regressions were performed for each cytosine-guanine dinucleotide (CpG) site, modeling the logit transformation of the ß value as a linear function of the presence of endometriosis. Sensitivity analyses were conducted controlling for estradiol levels and menopausal status. Replication study performed evaluating for any association between CpGs reported in the literature and our findings. RESULTS: In total, 39,877 CpGs nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity, although none remained significant after correction for multiple comparisons (FDR < 0.05). Pathway analysis of these CpGs showed enrichment in 68 biologic pathways involved in various endocrine, immunologic, oncologic, and cell regulation processes as well as embryologic reproductive tract development and function (FoxO, Wnt, and Hedgehog signaling). We identified 42,261 CpG sites in the literature reported to be associated with endometriosis; 2012 of these CpG sites were also significant in our cohort. CONCLUSION: We found 39,877 CpG sites that nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity; however, none remained significant after correction for multiple comparisons (FDR < 0.05).
Asunto(s)
Metilación de ADN/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Endometriosis/genética , Epigenómica , Islas de CpG/genética , Metilación de ADN/genética , Endometriosis/inducido químicamente , Endometriosis/epidemiología , Endometriosis/patología , Exposición a Riesgos Ambientales , Femenino , Humanos , Persona de Mediana Edad , Bifenilos Polibrominados/toxicidad , Reproducción/efectos de los fármacosRESUMEN
BACKGROUND: Michigan residents were directly exposed to endocrine-disrupting compounds, polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB). A growing body of evidence suggests that exposure to certain endocrine-disrupting compounds may affect thyroid function, especially in people exposed as children, but there are conflicting observations. In this study, we extend previous work by examining age of exposure's effect on the relationship between PBB exposure and thyroid function in a large group of individuals exposed to PBB. METHODS: Linear regression models were used to test the association between serum measures of thyroid function (total thyroxine (T4), total triiodothyronine (T3), free T4, free T3, thyroid stimulating hormone (TSH), and free T3: free T4 ratio) and serum PBB and PCB levels in a cross-sectional analysis of 715 participants in the Michigan PBB Registry. RESULTS: Higher PBB levels were associated with many thyroid hormones measures, including higher free T3 (p = 0.002), lower free T4 (p = 0.01), and higher free T3: free T4 ratio (p = 0.0001). Higher PCB levels were associated with higher free T4 (p = 0.0002), and higher free T3: free T4 ratio (p = 0.002). Importantly, the association between PBB and thyroid hormones was dependent on age at exposure. Among people exposed before age 16 (N = 446), higher PBB exposure was associated with higher total T3 (p = 0.01) and free T3 (p = 0.0003), lower free T4 (p = 0.04), and higher free T3: free T4 ratio (p = 0.0001). No significant associations were found among participants who were exposed after age 16. No significant associations were found between TSH and PBB or PCB in any of the analyses conducted. CONCLUSIONS: This suggests that both PBB and PCB are associated with thyroid function, particularly among those who were exposed as children or prenatally.
Asunto(s)
Exposición a Riesgos Ambientales , Bifenilos Polibrominados/sangre , Bifenilos Policlorados/sangre , Hormonas Tiroideas/sangre , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Michigan , Persona de Mediana EdadRESUMEN
Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest that combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.
Asunto(s)
Labio Leporino , Fisura del Paladar , Análisis de la Célula Individual , Labio Leporino/genética , Fisura del Paladar/genética , Humanos , Ratones , Animales , Transcriptoma , Variación Genética/genética , Perfilación de la Expresión GénicaRESUMEN
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Asunto(s)
Fisura del Paladar , Isoformas de Proteínas , Proteínas de Unión al ARN , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Fisura del Paladar/genética , Fisura del Paladar/embriología , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Labio Leporino/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Empalme Alternativo , Línea Celular , MutaciónRESUMEN
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
RESUMEN
As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p=6.86×10-7). Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known craniofacial enhancer. We then tested whether these variants could alter predicted transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites for 9 transcription factors (TFs), including Pax1 (p=0.0009), and created binding sites for 23 TFs, including Pax6 (p=6.12×10-5) and Pax9 (p= 0.0001), which are known to be involved in normal craniofacial development, suggesting a potential mechanism by which these synonymous variants could have a functional impact. Overall, this study demonstrates that rare genetic variation contributes to the phenotypic heterogeneity of OFCs and suggests that regulatory variation may also contribute and warrant further investigation in future studies of genetic variants controlling risk to OFC.
RESUMEN
Orofacial clefts (OFCs) are the most common craniofacial birth defects and are often categorized into two etiologically distinct groups: cleft lip with or without cleft palate (CL/P) and isolated cleft palate (CP). CP is highly heritable, but there are still relatively few established genetic risk factors associated with its occurrence compared to CL/P. Historically, CP has been studied as a single phenotype despite manifesting across a spectrum of defects involving the hard and/or soft palate. We performed GWAS using transmission disequilibrium tests using 435 case-parent trios to evaluate broad risks for any cleft palate (ACP, n=435), as well as subtype-specific risks for any cleft soft palate (CSP, n=259) and any cleft hard palate (CHP, n=125). We identified a single genome-wide significant locus at 9q33.3 (lead SNP rs7035976, p=4.24×10 -8 ) associated with CHP. One gene at this locus, angiopoietin-like 2 ( ANGPTL2 ), plays a role in osteoblast differentiation. It is expressed in craniofacial tissue of human embryos, as well as in the developing mouse palatal shelves. We found 19 additional loci reaching suggestive significance (p<5×10 -6 ), of which only one overlapped between groups (chromosome 17q24.2, ACP and CSP). Odds ratios (ORs) for each of the 20 loci were most similar across all three groups for SNPs associated with the ACP group, but more distinct when comparing SNPs associated with either the CSP or CHP groups. We also found nominal evidence of replication (p<0.05) for 22 SNPs previously associated with cleft palate (including CL/P). Interestingly, most SNPs associated with CL/P cases were found to convey the opposite effect in those replicated in our dataset for CP only. Ours is the first study to evaluate CP risks in the context of its subtypes and we provide newly reported associations affecting the broad risk for CP as well as evidence of subtype-specific risks.
RESUMEN
Cleft palate (CP) is one of the most common craniofacial birth defects; however, there are relatively few established genetic risk factors associated with its occurrence despite high heritability. Historically, CP has been studied as a single phenotype, although it manifests across a spectrum of defects involving the hard and/or soft palate. We performed a genome-wide association study using transmission disequilibrium tests of 435 case-parent trios to evaluate broad risks for any cleft palate (ACP) (n = 435), and subtype-specific risks for any cleft soft palate (CSP), (n = 259) and any cleft hard palate (CHP) (n = 125). We identified a single genome-wide significant locus at 9q33.3 (lead SNP rs7035976, p = 4.24 × 10-8) associated with CHP. One gene at this locus, angiopoietin-like 2 (ANGPTL2), plays a role in osteoblast differentiation. It is expressed both in craniofacial tissue of human embryos and developing mouse palatal shelves. We found 19 additional loci reaching suggestive significance (p < 5 × 10-6), of which only one overlapped between groups (chromosome 17q24.2, ACP and CSP). Odds ratios for the 20 loci were most similar across all 3 groups for SNPs associated with the ACP group, but more distinct when comparing SNPs associated with either subtype. We also found nominal evidence of replication (p < 0.05) for 22 SNPs previously associated with orofacial clefts. Our study to evaluate CP risks in the context of its subtypes and we provide newly reported associations affecting the broad risk for CP as well as evidence of subtype-specific risks.
Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Animales , Ratones , Fisura del Paladar/epidemiología , Estudio de Asociación del Genoma Completo , Labio Leporino/epidemiología , Factores de Riesgo , Proteína 2 Similar a la AngiopoyetinaRESUMEN
BACKGROUND: The epilepsies are highly heritable conditions that commonly follow complex inheritance. While monogenic causes have been identified in rare familial epilepsies, most familial epilepsies remain unsolved. We aimed to determine (1) whether common genetic variation contributes to familial epilepsy risk, and (2) whether that genetic risk is enriched in familial compared with non-familial (sporadic) epilepsies. METHODS: Using common variants derived from the largest epilepsy genome-wide association study, we calculated polygenic risk scores (PRS) for patients with familial epilepsy (n = 1,818 from 1,181 families), their unaffected relatives (n = 771), sporadic patients (n = 1,182), and population controls (n = 15,929). We also calculated separate PRS for genetic generalised epilepsy (GGE) and focal epilepsy. Statistical analyses used mixed-effects regression models to account for familial relatedness, sex, and ancestry. FINDINGS: Patients with familial epilepsies had higher epilepsy PRS compared to population controls (OR 1·20, padj = 5×10-9), sporadic patients (OR 1·11, padj = 0.008), and their own unaffected relatives (OR 1·12, padj = 0.01). The top 1% of the PRS distribution was enriched 3.8-fold for individuals with familial epilepsy when compared to the lowest decile (padj = 5×10-11). Familial PRS enrichment was consistent across epilepsy type; overall, polygenic risk was greatest for the GGE clinical group. There was no significant PRS difference in familial cases with established rare variant genetic etiologies compared to unsolved familial cases. INTERPRETATION: The aggregate effects of common genetic variants, measured as polygenic risk scores, play an important role in explaining why some families develop epilepsy, why specific family members are affected while their relatives are not, and why families manifest specific epilepsy types. Polygenic risk contributes to the complex inheritance of the epilepsies, including in individuals with a known genetic etiology. FUNDING: National Health and Medical Research Council of Australia, National Institutes of Health, American Academy of Neurology, Thomas B and Jeannette E Laws McCabe Fund, Mirowski Family Foundation.
Asunto(s)
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticos , Epilepsia/genética , Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genéticaRESUMEN
Exposure to polychlorinated biphenyls (PCBs), an endocrine-disrupting compound, is ubiquitous despite decades-old bans on the manufacture and use of PCBs. Increased exposure to PCBs is associated with adverse health consequences throughout life, including type 2 diabetes and cancer. PCB exposure is also associated with alterations in epigenetic marks and gene transcription, which could lead to adverse health outcomes, but many of these are population-specific. To further investigate the association between PCB and epigenetic marks, DNA methylation was measured at 787,684 CpG sites in 641 peripheral blood samples from the Michigan Polybrominated Biphenyl (PBB) Registry. 1345 CpGs were associated with increased total PCB level after controlling for age, sex, and 24 surrogate variables (FDR < 0.05). These CpGs were enriched in active promoter and transcription associated regions (p < 0.05), and in regions around the binding sites for transcription factors involved in xenobiotic metabolism and immune function (FDR < 0.05). PCB exposure also associated with proportions of CD4T, NK, and granulocyte cell types, and with the neutrophil to lymphocyte ratio (NLR) (p < 0.05), and the estimated effect sizes of PCB on the epigenome were correlated with the effect sizes previously reported in an epigenome-wide study of C-reactive protein (r = 0.29; p = 2.22e-5), supporting previous studies on the association between PCB and immune dysfunction. These results indicate that PCB exposure is associated with differences in epigenetic marks in active regions of the genome, and future work should investigate whether these may mediate the association between PCB and health consequences.
Asunto(s)
Diabetes Mellitus Tipo 2 , Disruptores Endocrinos , Bifenilos Polibrominados , Bifenilos Policlorados , Metilación de ADN , HumanosRESUMEN
Nonsyndromic orofacial clefts (OFCs) are a common birth defect and are phenotypically heterogenous in the structure affected by the cleft - cleft lip (CL) and cleft lip and palate (CLP) - as well as other features, such as the severity of the cleft. Here, we focus on bilateral and unilateral clefts as one dimension of OFC severity, because the genetic architecture of these subtypes is not well understood. We tested for subtype-specific genetic associations in 44 bilateral CL (BCL) cases, 434 unilateral CL (UCL) cases, 530 bilateral CLP cases (BCLP), 1123 unilateral CLP (UCLP) cases, and unrelated controls (N = 1626), using a mixed-model approach. While no novel loci were found, the genetic architecture of UCL was distinct compared to BCL, with 44.03% of suggestive loci having different effects between the two subtypes. To further understand the subtype-specific genetic risk factors, we performed a genome-wide scan for modifiers and found a significant modifier locus on 20p11 (p=7.53×10-9), 300kb downstream of PAX1, that associated with higher odds of BCL vs. UCL, and replicated in an independent cohort (p=0.0018) with no effect in BCLP (p>0.05). We further found that this locus was associated with normal human nasal shape. Taken together, these results suggest bilateral and unilateral clefts may have different genetic architectures. Moreover, our results suggest BCL, the rarest form of OFC, may be genetically distinct from the other OFC subtypes. This expands our understanding of modifiers for OFC subtypes and further elucidates the genetic mechanisms behind the phenotypic heterogeneity in OFCs.
RESUMEN
In 1973, accidental contamination of Michigan livestock with polybrominated biphenyls (PBBs) led to the establishment of a registry of exposed individuals that have been followed for > 40 years. Besides being exposed to PBBs, this cohort has also been exposed to polychlorinated biphenyls (PCBs), a structurally similar class of environmental pollutants, at levels similar to average US exposure. In this study, we examined the association between current serum PCB and PBB levels and various female reproductive health outcomes to build upon previous work and inconsistencies. Participation in this cross-sectional study required a blood draw and completion of a detailed health questionnaire. Analysis included only female participants who had participated between 2012 and 2015 (N = 254). Multivariate linear and logistic regression models were used to identify associations between serum PCB and PBB levels with each gynecological and infertility outcome. Additionally, a generalized estimating equation (GEE) model was used to evaluate each pregnancy and birth outcome in order to account for multiple pregnancies per woman. We controlled for age, body mass index, and total lipid levels in all analyses. A p-value of <0.05 was used for statistical significance. Among the women who reported ever being pregnant, there was a significant negative association with higher total PCB levels associating with fewer lifetime pregnancies (âß = -0.11, 95% CI = -0.21 to -0.005, p = 0.04). There were no correlations between serum PCB levels and the self-reported gynecological outcomes (pelvic inflammatory disease, endometriosis, polycystic ovarian syndrome, or uterine fibroids). No associations were identified between serum PCB levels and the prevalence of female infertility in women reporting ever having sexual intercourse with a male partner. There were no associations identified between serum PCB levels and pregnancy outcomes (singleton live births or miscarriages) or birth outcomes (preterm birth, birth weight, birth defects, hypertensive disorders of pregnancy, or gestational diabetes). PBB was not associated with any outcome. Further research is needed to determine if and how PCB may reduce pregnancy number.
Asunto(s)
Exposición a Riesgos Ambientales/análisis , Bifenilos Polibrominados/efectos adversos , Bifenilos Policlorados/efectos adversos , Salud Reproductiva , Adolescente , Adulto , Femenino , Humanos , Infertilidad Femenina/etiología , Persona de Mediana Edad , Embarazo , Resultado del Embarazo , Adulto JovenRESUMEN
Aim: Michigan residents were exposed to polybrominated biphenyls (PBBs) when it was accidentally added to the food supply. Highly exposed individuals report sex-specific health problems, but the underlying biological mechanism behind these different health risks is not known. Materials and methods: DNA methylation in blood from 381 women and 277 men with PBB exposure was analyzed with the MethylationEPIC BeadChip. Results: 675 CpGs were associated with PBBs levels in males, while only 17 CpGs were associated in females (false discovery rate <0.05). No CpGs were associated in both sexes. These CpGs were enriched in different functional regions and transcription factor binding sites in each sex. Conclusion: Exposure to PBBs may have sex-specific effects on the epigenome that may underlie sex-specific adverse health outcomes.
Asunto(s)
Metilación de ADN , Bifenilos Polibrominados/toxicidad , Caracteres Sexuales , Adulto , Anciano , Anciano de 80 o más Años , Sitios de Unión , Islas de CpG , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Transcripción/metabolismo , Adulto JovenRESUMEN
In 1973, Michigan residents were exposed to polybrominated biphenyl (PBB) when it was accidentally added to farm animal feed. Highly exposed individuals and their children have experienced endocrine-related health problems, though the underlying mechanism behind these remains unknown. We investigated whether PBB exposure is associated with variation in DNA methylation in peripheral blood samples from 658 participants of the Michigan PBB registry using the MethylationEPIC BeadChip, as well as investigated what the potential function of the affected regions are and whether these epigenetic marks are known to associate with endocrine system pathways. After multiple test correction (FDR <0.05), 1890 CpG sites associated with total PBB levels. These CpGs were not enriched in any particular biological pathway, but were enriched in enhancer and insulator regions, and depleted in regions near the transcription start site or in CpG islands (p < 0.05). They were also more likely to be in ARNT and ESR2 transcription factor binding sites (p = 3.27e-23 and p = 1.62e-6, respectively), and there was significant overlap between CpGs associated with PBB and CpGs associated with estrogen (p < 2.2e-16). PBB-associated CpGs were also enriched for CpGs known to be associated with gene expression in blood (eQTMs) (p < 0.05). These eQTMs were enriched for pathways related to immune function and endocrine-related autoimmune disease (FDR <0.05). These results indicate that exposure to PBB is associated with differences in epigenetic marks that suggest that it is acting similarly to estrogen and is associated with dysregulated immune system pathways.
Asunto(s)
Células Sanguíneas/efectos de los fármacos , Metilación de ADN , Disruptores Endocrinos/toxicidad , Bifenilos Polibrominados/toxicidad , Adulto , Anciano , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Endocrine-disrupting compounds are associated with altered epigenetic regulation and adverse health outcomes, although inconsistent results suggest that people have varied responses to the same exposure. Interpersonal variation in response to environmental exposures is not identified using standard, population-based methods. However, methods that capture an individual's response, such as analyzing stochastic epigenetic mutations (SEMs), may capture currently missed effects of environmental exposure. To test whether polybrominated biphenyl (PBB) was associated with SEMs, DNA methylation was measured using Illumina's MethylationEPIC array in PBB-exposed individuals, and SEMs were identified. Association was tested using a linear regression with robust sandwich variance estimators, controlling for age, sex, lipids, and cell types. The number of SEMs was variable (range: 119-18,309), and positively associated with age (p = 1.23e-17), but not with sex (p = 0.97). PBBs and SEMs were only positively associated in people who were older when they were exposed (p = 0.02 vs. p = 0.91). Many subjects had SEMs enriched in biological pathways, particularly in pathways involved with xenobiotic metabolism and endocrine function. Higher number of SEMs was also associated with higher age acceleration (intrinsic: p = 1.70e-3; extrinsic: p = 3.59e-11), indicating that SEMs may be associated with age-related health problems. Finding an association between environmental contaminants and higher SEMs may provide insight into individual differences in response to environmental contaminants, as well as into the biological mechanism behind SEM formation. Furthermore, these results suggest that people may be particularly vulnerable to epigenetic dysregulation from environmental exposures as they age.