Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(1): 325-334, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34920670

RESUMEN

Safeners are used extensively in commercial herbicide formulations. Although safeners are regulated as inert ingredients, some of their transformation products have enhanced biological activity. Here, to fill gaps in our understanding of safener environmental fate, we determined rate constants and transformation products associated with the acid- and base-mediated hydrolysis of dichloroacetamide safeners AD-67, benoxacor, dichlormid, and furilazole. Second-order rate constants for acid- (HCl) and base-mediated (NaOH) dichloroacetamide hydrolysis (2.8 × 10-3 to 0.46 and 0.3-500 M-1 h-1, respectively) were, in many cases (5 of 8), greater than those reported for their chloroacetamide herbicide co-formulants. In particular, the rate constant for base-mediated hydrolysis of benoxacor was 2 orders of magnitude greater than that of its active ingredient co-formulant, S-metolachlor. At circumneutral pH, only benoxacor underwent appreciable hydrolysis (5.3 × 10-4 h-1), and under high-pH conditions representative of lime-soda softening, benoxacor's half-life was 13 h─a timescale consistent with partial transformation during water treatment. Based on Orbitrap LC-MS/MS analysis of dichloroacetamide hydrolysis product mixtures, we propose structures for major products and three distinct mechanistic pathways that depend on the system pH and compound structure. These include base-mediated amide cleavage, acid-mediated amide cleavage, and acid-mediated oxazolidine ring opening. Collectively, this work will help to identify systems in which hydrolysis contributes to the transformation of dichloroacetamides, while also highlighting important differences in the reactivity of dichloroacetamides and their active chloroacetamide co-formulants.


Asunto(s)
Herbicidas , Acetamidas , Cromatografía Liquida , Herbicidas/química , Hidrólisis , Espectrometría de Masas en Tándem
2.
Environ Sci Technol ; 55(21): 14658-14666, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34637294

RESUMEN

There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17ß-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5-5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Halogenación , Contaminantes Químicos del Agua/análisis
3.
Inorg Chem ; 59(12): 8134-8145, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32437172

RESUMEN

Naturally occurring uranium is a widespread contaminant present in the water resources around the abandoned uranium mines in the southwest United States. A novel method for rapid uranium detection has been recently developed that relies on the sequestering of uranium by amidoximated polyacrylonitrile (AO-PAN) polymer mats and uses the Raman-active (ν1) symmetric stretch as the signal. The Raman signals obtained from uranium bearing AO-PAN were challenging to interpret due to an unknown uranyl speciation on the surface of the mats. Herein, we provide the synthesis and structural characterization of six model coordination compounds that contain acetamidoxime/benzamidoxime (AAO/BAO) coordinated to the uranyl cation: [UO2(η1-AAO)(NO3)2(H2O)] (1), [UO2(η1-AAO)2(NO3)2] (2), [UO2(η2-BAO)2(CH3OH)2] (3), [(UO2)3(η2-BAO)3(µ2-NO3)3] (4), [(UO2)4(µ3-O)2(µ2-BAO)4(η1-BAO)4(H2O)2](NO3)4 (5), and [(UO2)4(µ3-O)2(µ2-BAO)4(η1-BAO)6Na(NO3)2](NO3)3 (6). Solid-state Raman spectra of 1-6 showed dramatic differences in the uranyl ν1 symmetric stretch depending on the coordination of the amidoxime functional group. The assignments made from the solid-state Raman spectra were used to deconvolute the solution-state Raman spectra of uranyl-acetamidoxime/benzamidoxime methanol solutions at different metal to ligand molar ratios. At low molar ratios (1 U:1 AAO/BAO and 1 U:2 AAO/BAO) the dominant species is the uranyl coordinated via the η1-oxygen atom of the oxime group, while at high molar ratios (1 U:3 AAO/BAO and 1 U:4 AAO/BAO) the dominant species are a tetrameric uranyl-µ3-O-η1-amidoxime complex similar to compounds 5 and 6 and a uranyl-η2-amidoxime complex similar to compounds 3 and 4. Solid-state Raman spectra showed good agreement with Raman signals obtained from the uranyl-AO-PAN mats, demonstrating that binding motifs between uranyl and amidoxime in compounds 5 and 6 are the most representative of the uranyl species on the surface of the AO-PAN mats.

4.
Environ Sci Technol ; 54(17): 10668-10677, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786552

RESUMEN

Per and polyfluoroalkyl substances (PFAS), legacy chemicals used in firefighting and the manufacturing of many industrial and consumer goods, are widely found in groundwater resources, along with other regulated compounds, such as chlorinated solvents. Due to their strong C-F bonds, these molecules are extremely recalcitrant, requiring advanced treatment methods for effective remediation, with hydrated electrons shown to be able to defluorinated these compounds. A combined photo/electrochemical method has been demonstrated to dramatically increase defluorination rates, where PFAS molecules sorbed onto appropriately functionalized cathodes charged to low cell potentials (-0.58 V vs Ag/AgCl) undergo a transient electron transfer event from the electrode, which "primes" the molecule by reducing the C-F bond strength and enables the bond's dissociation upon the absorption of a hydrated electron. In this work, we explore the impact of headgroup and chain length on the performance of this two-electron process and extend this technique to chlorinated solvents. We use isotopically labeled PFAS molecules to take advantage of the kinetic isotope effect and demonstrate that indeed PFAS defluorination is likely driven by a two-electron process. We also present density functional theory calculations to illustrate that the externally applied potential resulted in an increased rate of electron transfer, which ultimately increased the measured defluorination rate.


Asunto(s)
Fluorocarburos , Agua Subterránea , Electrodos , Electrones , Cinética
5.
Environ Sci Technol ; 54(22): 14694-14705, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33119293

RESUMEN

Widespread application of neonicotinoids has led to their proliferation in waters. Despite low neonicotinoid hydrophobicity, our prior studies implicated granular activated carbon (GAC) in neonicotinoid removal. Based on known receptor binding characteristics, we hypothesized that the insecticidal pharmacophore influences neonicotinoid sorption. Our objectives were to illuminate drivers of neonicotinoid sorption for parent neonicotinoids (imidacloprid, clothianidin, thiamethoxam, and thiacloprid) and pharmacophore-altered metabolites (desnitro-imidacloprid and imidacloprid urea) to GAC, powdered activated carbon, and carbon nanotubes (CNTs). Neonicotinoid sorption to GAC was extensive and largely irreversible, with significantly greater sorption of imidacloprid than desnitro-imidacloprid. Imidacloprid and imidacloprid urea (electronegative pharmacophores) sorbed most extensively to nonfunctionalized CNTs, whereas desnitro-imidacloprid (positive pharmacophore) sorbed most to COOH-CNTs, indicating the importance of charge interactions and/or hydrogen bonding between the pharmacophore and carbon surface. Water chemistry parameters (temperature, alkalinity, ionic strength, and humic acid) inhibited overall neonicotinoid sorption, suggesting that pharmacophore-driven sorption in real waters may be diminished. Analysis of a full-scale drinking water treatment plant GAC filter influent, effluent, and spent GAC attributes neonicotinoid/metabolite removal to GAC under real-world conditions for the first time. Our results demonstrate that the neonicotinoid pharmacophore not only confers insecticide selectivity but also impacts sorption behavior, leading to less effective removal of metabolites by GAC filters in water treatment.


Asunto(s)
Insecticidas , Nanotubos de Carbono , Carbón Orgánico , Insecticidas/análisis , Neonicotinoides , Nitrocompuestos , Tiametoxam
6.
Environ Sci Technol ; 54(19): 12181-12190, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32910850

RESUMEN

Photolysis of trenbolone acetate (TBA) metabolites in the presence of various nitrogen-, sulfur-, or oxygen-containing nucleophiles (e.g., azide, ammonia, or thiosulfate, respectively) results in rapid (half-lives ∼20-60 min), photochemically induced nucleophile incorporation across the parent steroid's trienone moiety. The formation of such nucleophile adducts limits formation of photohydrates, suggesting competition between the nucleophile and water for photochemical addition into the activated steroid structure. Analogous to previously reported photohydration outcomes, LC/MS analyses suggest that such photonucleophilic addition reactions are reversible, with more rapid elimination rates than thermal dehydration of photohydrates, and regenerate parent steroid structures. Beyond photonucleophilic addition pathways, we also found that hydroxylamine and presumed nucleophilic moieties in model dissolved organic matter (DOM; Fluka humic acid) can react via thermal substitution with TBA metabolite photohydrates, although this reaction with model DOM was only observed for photohydrates of trendione. Most nucleophile addition products [i.e., formed via (photo)reaction with thiosulfate, hydroxylamine, and ammonia] are notably more polar relative to the parent metabolite and photohydration products. Thus, if present, both nucleophilic adducts and bound residues in organic matter will facilitate transport and help mask detection of TBA metabolites in surface waters and treatment systems.


Asunto(s)
Acetato de Trembolona , Contaminantes Químicos del Agua , Cromatografía Liquida , Sustancias Húmicas , Espectrometría de Masas , Fotólisis , Acetato de Trembolona/análisis
7.
Environ Sci Technol ; 54(11): 6703-6712, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32343558

RESUMEN

To improve the performance of polymeric electrospun nanofiber mats (ENMs) for equilibrium passive sampling applications in water, we integrated two types of multiwalled carbon nanotubes (CNTs; with and without surface carboxyl groups) into polyacrylonitrile (PAN) and polystyrene (PS) ENMs. For 11 polar and moderately hydrophobic compounds (-0.07 ≤ logKOW ≤ 3.13), 90% of equilibrium uptake was achieved in under 0.8 days (t90% values) in nonmixed ENM-CNT systems. Sorption capacity of ENM-CNTs was between 2- and 50-fold greater than pure polymer ENMs, with equilibrium partition coefficients (KENM-W values) ranging from 1.4 to 3.1 log units (L/kg) depending on polymer type (hydrophilic PAN or hydrophobic PS), CNT loading (i.e., values increased with weight percent (wt %) of CNTs), and CNT type (i.e., greater uptake with carboxylated CNTs composites). During field deployment at Muddy Creek in North Liberty, Iowa, optimal ENM-CNTs (PAN with 20 wt % carboxylated CNTs) yielded atrazine concentrations in surface water with a 40% difference relative to analysis of a same-day grab sample. We also observed a mean percent difference of 30 (±20)% when comparing ENM-CNT sampler results to grab sample data collected within 1 week of deployment. With their rapid, high capacity uptake and small material footprint, ENM-CNT equilibrium passive samplers represent a promising alternative to complement traditional integrative passive samplers while offering convenience over large volume grab sampling.


Asunto(s)
Nanofibras , Nanotubos de Carbono , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Iowa , Polímeros , Contaminantes Químicos del Agua/análisis
8.
Water Sci Technol ; 82(12): 2725-2736, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33341765

RESUMEN

Across the Midwestern United States, Public Water Systems (PWSs) struggle with high levels of nitrate in source waters from intense agricultural activity. Leveraging a sensor network deployed across Iowa surface waters, we evaluated the potential of the Hach Nitratax SC Plus, which uses UV-light absorption to quantify dissolved nitrate-nitrite (NOx-N) down to 0.1 mg-N L-1, for real-time monitoring of NOx-N in drinking water. For six different PWSs over multiple years, we compare NOx-N levels in source waters (surface and groundwater under surface influence) to those measured via traditional methods (e.g., ion chromatography (IC)) for US EPA compliance monitoring. At one large PWS, we also evaluated sensor performance when applied to near-finished drinking water (filter effluent). We find good agreement between traditional analytical methods and in situ sensors. For example, for 771 filter effluent samples from 2006-2011, IC analysis averaged NOx-N of 5.8 mg L-1 while corresponding sensor measurements averaged 5.7 mg L-1 with a mean absolute error of 0.23 (5.6%). We identify several benefits of using real-time sensors in PWSs, including improved frequency to capture elevated NOx-N levels and as decision-support tools for NOx-N management.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Nitratos/análisis , Estados Unidos , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
9.
J Org Chem ; 84(17): 11366-11371, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31381858

RESUMEN

While studying the environmental fate of potent endocrine-active steroid hormones, we observed the formation of an intramolecular [2 + 2] photocycloaddition product (2) with a novel hexacyclic ring system following the photolysis of altrenogest (1). The structure and absolute configuration were established by X-ray diffraction analysis. Theoretical computations identified a barrierless two-step cyclization mechanism for the formation of 2 upon photoexcitation. 2 exhibited progesterone, estrogen, androgen, and pregnane X receptor activity, albeit generally with reduced potency relative to 1.


Asunto(s)
Procesos Fotoquímicos , Acetato de Trembolona/análogos & derivados , Reacción de Cicloadición , Teoría Funcional de la Densidad , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Acetato de Trembolona/síntesis química , Acetato de Trembolona/química , Acetato de Trembolona/metabolismo
10.
Environ Sci Technol ; 53(12): 6738-6746, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117539

RESUMEN

Dichloroacetamide safeners are commonly added to commercial chloroacetamide herbicide formulations and widely used worldwide, but their environmental fate has garnered little scrutiny as a result of their classification as "inert" ingredients. Here, we investigated the photolysis of dichloroacetamide safeners to better understand their persistence and the nature of their transformation products in surface waters. High-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize photoproducts. Of the four commonly used dichloroacetamide safeners, only benoxacor undergoes direct photolysis under simulated natural sunlight ( t1/2 ∼ 10 min). Via a photoinitiated ring closure, benoxacor initially yields a monochlorinated intermediate that degrades over longer irradiation time scales to produce two fully dechlorinated diastereomers and a tautomer, which further photodegrade over several days to a structurally related aldehyde confirmed via NMR. Dichlormid, AD-67, and furilazole were more slowly degraded by indirect photolysis in the presence of the photosensitizers nitrate, nitrite, and humic acid. Reactive entities involved in these reactions are likely hydroxyl radical and singlet oxygen based on the use of selective quenchers. These safeners also directly photolyzed under higher energy ultraviolet (UV) light, suggesting their potential transformation in engineered systems using UV for disinfection. The finding that dichloroacetamide safeners can undergo photolysis in environmental systems over relevant time scales demonstrates the importance of evaluating the fate of this class of "inert" agrochemicals.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Acetamidas , Sustancias Húmicas , Cinética , Fotólisis , Luz Solar
11.
Anal Chem ; 90(11): 6766-6772, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29741873

RESUMEN

Reproducible detection of uranyl, an important biological and environmental contaminant, from complex matrixes by surface-enhanced Raman scattering (SERS) is successfully achieved using amidoximated-polyacrylonitrile (AO-PAN) mats and carboxylated gold (Au) nanostars. SERS detection of small molecules from a sample mixture is traditionally limited by nonspecific adsorption of nontarget species to the metal nanostructures and subsequent variations in both the vibrational frequencies and intensities. Herein, this challenge is overcome using AO-PAN mats to extract uranyl from matrixes ranging in complexity including HEPES buffer, Ca(NO3)2 and NaHCO3 solutions, and synthetic urine. Subsequently, Au nanostars functionalized with carboxyl-terminated alkanethiols are used to enhance the uranyl signal. The detected SERS signals scale with uranyl uptake as confirmed using liquid scintillation counting. SERS vibrational frequencies of uranyl on both hydrated and lyophilized polymer mats are largely independent of sample matrix, indicating less complexity in the uranyl species bound to the surface of the mats vs in solution. These results suggest that matrix effects, which commonly limit the use of SERS for complex sample analysis, are minimized for uranyl detection. The presented synergistic approach for isolating uranyl from complex sample matrixes and enhancing the signal using SERS is promising for real-world sample detection and eliminates the need of radioactive tracers and extensive sample pretreatment steps.


Asunto(s)
Resinas Acrílicas/química , Oro/química , Nanopartículas del Metal/química , Uranio/análisis , Espectrometría Raman , Propiedades de Superficie
12.
Environ Sci Technol ; 50(13): 6753-61, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-26800354

RESUMEN

Photolysis experiments (in H2O and D2O) and quantum chemical calculations were performed to explore the pH-dependent, reversible photohydration of trenbolone acetate (TBA) metabolites. Photohydration of 17α-trenbolone (17α-TBOH) and 17ß-trenbolone (17ß-TBOH) occurred readily in simulated sunlight to yield hydrated products with incorporated H(+) at C4 and OH(-) at either C5 (5-OH-TBOH) or C12 (12-OH-TBOH) in the tetracyclic steroid backbone. Although unable to be elucidated analytically, theory suggests preferred orientations of cis-12-OH-TBOH (relative to C13 methyl) and trans-5-OH-TBOH, with the former most thermodynamically stable overall. Both experiment and theory indicate limited stability of trans-5-OH-TBOH at acidic pH where it undergoes concurrent, carbocation-mediated thermal rearrangement to cis-12-OH-TBOH and dehydration to regenerate its parent structure. Experiments revealed cis-12-OH-TBOH to be more stable at acidic pH, which is the only condition where its reversion to parent TBA metabolite occurred. At basic pH cis-12-OH-TBOH decayed quickly via hydroxide/water addition, behavior that theory attributes to the formation of a stable enolate resistant to dehydration but prone to thermal hydration. In a noteworthy deviation from predicted theoretical stability, 17α-TBOH photohydration yields major trans-5-OH-TBOH and minor cis-12-OH-TBOH, a distribution also opposite that observed for 17ß-TBOH. Because H(+) and OH(-) loss from adjacent carbon centers allows trans-5-OH-TBOH to dehydrate at all pH values, the presumed kinetically controlled yield of 17α-TBOH photohydrates results in a greater propensity for 17α-TBOH reversion than 17ß-TBOH. Additional calculations explored minor, but potentially bioactive, trenbolone analogs that could be generated via alternative rearrangement of the acidic carbocation intermediate.


Asunto(s)
Acetato de Trembolona , Contaminantes Químicos del Agua , Fotólisis , Agua/química
13.
Environ Sci Technol ; 50(14): 7480-8, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27356268

RESUMEN

Despite its wide use as a veterinary pharmaceutical, environmental fate data is lacking for altrenogest, a potent synthetic progestin. Here, it is reported that direct photolysis of altrenogest under environmentally relevant conditions was extremely efficient and rapid (half-life ∼25 s). Photolysis rates (observed rate constant kobs = 2.7 ± 0.2 × 10(-2) s(-1)) were unaffected by changes in pH or temperature but were sensitive to oxygen concentrations (N2-saturated kobs = 9.10 ± 0.32 × 10(-2) s(-1); O2-saturated kobs = 1.38 ± 0.11 × 10(-2) s(-1)). The primary photoproduct was identified as an isomer formed via an internal 2 + 2 cycloaddition reaction; the triplet lifetime (8.4 ± 0.2 µs) and rate constant (8 × 10(4) s(-1)) of this reaction were measured using transient absorption spectroscopy. Subsequent characterization determined that this primary cycloaddition photoproduct undergoes photohydration. The resultant photostable secondary photoproducts are subject to thermal dehydration in dark conditions, leading to reversion to the primary cycloaddition photoproduct on a time scale of hours to days, with the photohydration and dehydration repeatable over several light/dark cycles. This dehydration reaction occurs more rapidly at higher temperatures and is also accelerated at both high and low pH values. In vitro androgen receptor (AR)-dependent gene transcriptional activation cell assays and in silico nuclear hormone receptor screening revealed that certain photoproducts retain significant androgenic activity, which has implications for exposure risks associated with the presence and cycling of altrenogest and its photoproducts in the environment.


Asunto(s)
Fotoquímica , Fotólisis , Ambiente , Semivida , Temperatura
14.
Environ Sci Technol ; 49(6): 3687-97, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25730285

RESUMEN

We explored factors influencing hydroxyl radical (•OH) formation during ozonation of multiwalled carbon nanotubes (MWCNTs) and assessed this system's viability as a next-generation advanced oxidation process (AOP). Using standard reactivity metrics for ozone-based AOPs (RCT values), MWCNTs promoted •OH formation during ozonation to levels exceeding ozone (both alone and with activated carbon) and equivalent to ozone with hydrogen peroxide. MWCNTs oxidized with nitric acid exhibited vastly greater rates of ozone consumption and •OH formation relative to as-received MWCNTs. While some of this enhancement reflects their greater suspension stability, a strong correlation between RCT values and surface oxygen concentrations from X-ray photoelectron spectroscopy suggests that surface sites generated during MWCNT oxidation promote •OH exposure. Removal of several ozone-recalcitrant species [para-chlorobenzoic acid (p-CBA), atrazine, DEET, and ibuprofen] was not significantly inhibited in the presence of radical scavengers (humic acid, carbonate), in complex aquatic matrices (Iowa River water) and after 12 h of continuous exposure of MWCNTs to concentrated ozone solutions. As a proof-of-concept, oxidized MWCNTs deposited on a ceramic membrane chemically oxidized p-CBA in a flow through system, with removal increasing with influent ozone concentration and mass of deposited MWCNTs (in mg/cm2). This hybrid membrane platform, which integrates adsorption, oxidation, and filtration via an immobilized MWCNT layer, may serve as the basis for future novel nanomaterial-enabled technologies, although long-term performance trials under representative treatment scenarios remain necessary.


Asunto(s)
Filtración/instrumentación , Radical Hidroxilo/química , Nanotubos de Carbono/química , Ozono/química , Carbonatos/química , Clorobenzoatos/análisis , Ambiente , Sustancias Húmicas/análisis , Iowa , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Ríos/química , Propiedades de Superficie , Suspensiones
15.
Environ Sci Technol ; 49(3): 1654-63, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25582552

RESUMEN

Titanium dioxide (TiO2) nanofibers with tailored structure and composition were synthesized by electrospinning to optimize photocatalytic treatment efficiency. Nanofibers of controlled diameter (30-210 nm), crystal structure (anatase, rutile, mixed phases), and grain size (20-50 nm) were developed along with composite nanofibers with either surface-deposited or bulk-integrated Au nanoparticle cocatalysts. Their reactivity was then examined in batch suspensions toward model (phenol) and emerging (pharmaceuticals, personal care products) pollutants across various water qualities. Optimized TiO2 nanofibers meet or exceed the performance of traditional nanoparticulate photocatalysts (e.g., Aeroxide P25) with the greatest reactivity enhancements arising from (i) decreasing diameter (i.e., increasing surface area), (ii) mixed phase composition [74/26 (±0.5) % anatase/rutile], and (iii) small amounts (1.5 wt %) of surface-deposited, more so than bulk-integrated, Au nanoparticles. Surface Au deposition consistently enhanced photoactivity by 5- to 10-fold across our micropollutant suite independent of their solution concentration, behavior that we attribute to higher photocatalytic efficiency from improved charge separation. However, the practical value of Au/TiO2 nanofibers was limited by their greater degree of inhibition by solution-phase radical scavengers and higher rate of reactivity loss from surface fouling in nonidealized matrixes (e.g., partially treated surface water). Ultimately, unmodified TiO2 nanofibers appear most promising for use as reactive filtration materials because their performance was less influenced by water quality, although future efforts must increase the strength of TiO2 nanofiber mats to realize such applications.


Asunto(s)
Filtración/instrumentación , Nanofibras/química , Titanio/química , Purificación del Agua/métodos , Catálisis , Oro/química , Nanopartículas del Metal/química , Preparaciones Farmacéuticas/química , Propiedades de Superficie , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación
16.
Environ Sci Technol ; 48(20): 11737-45, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25216024

RESUMEN

Environmental transformation processes, including those occurring in natural and engineered systems, do not necessarily drastically alter molecular structures of bioactive organic contaminants. While the majority of generated transformation products are likely benign, substantial conservation of structure in transformation products can imply conservation or even creation of bioactivity across multiple biological end points and thus incomplete mitigation of ecological risk. Therefore, focusing solely on parent compound removal for contaminants of higher relative risk, the most common approach to fate characterization, provides no mechanistic relationship to potential biological effects and is inadequate as a comprehensive metric for reduction of ecological risks. Here, we explore these phenomena for endocrine-active steroid hormones, focusing on examples of conserved bioactivity and related implications for fate assessment, regulatory approaches, and research opportunities.


Asunto(s)
Drogas de Diseño/metabolismo , Ambiente , Riesgo , Drogas de Diseño/química
17.
Environ Sci Technol ; 48(16): 9279-87, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25073818

RESUMEN

Hazardous byproducts may be generated during the environmental processing of engineered nanomaterials. Here, we explore the ability of carbon nanotubes with nitrogen-containing surface groups (N-CNTs) to generate N-nitrosodimethylamine (NDMA) during chemical disinfection. Unexpectedly, we observed that commercial N-CNTs with amine, amide, or N-containing polymer (PABS) surface groups are a source of NDMA. As-received powders can leach up to 50 ng of NDMA per mg of N-CNT in aqueous suspension; presumably NDMA originates as a residue from N-CNT manufacturing. Furthermore, reaction of N-CNTs with free chlorine, monochloramine, and ozone generated byproduct NDMA at yields comparable to those reported for natural organic matter. Chlorination also altered N-CNT surface chemistry, with X-ray photoelectron spectroscopy indicating addition of Cl, loss of N, and an increase in surface O. Although these changes can increase N-CNT suspension stability, they do not enhance their acute toxicity in E. coli bioassays above that observed for as-received powders. Notably, however, dechlorination of reacted N-CNTs with sulfite completely suppresses N-CNT toxicity. Collectively, our work demonstrates that N-CNTs are both a source and precursor of NDMA, a probable human carcinogen, while chemical disinfection can produce CNTs exhibiting surface chemistry and environmental behavior distinct from that of native (i.e., as-received) materials.


Asunto(s)
Dimetilnitrosamina , Desinfección , Nanotubos de Carbono/química , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Carcinógenos/química , Cloraminas/química , Dimetilnitrosamina/análisis , Dimetilnitrosamina/toxicidad , Escherichia coli/efectos de los fármacos , Humanos , Ozono/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Abastecimiento de Agua/normas
18.
Environ Sci Technol ; 47(14): 7940-8, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23755912

RESUMEN

Palladized nanoscale zerovalent iron (Pd/NZVI) has been utilized for source zone control, yet the reductant responsible for pollutant transformation and the optimal conditions for subsurface application remain poorly understood. Here, trends in Pd/Fe reactivity toward 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and cis-dichloroethene (cis-DCE) were compared in H2O and D2O batch systems as a function of pH, chlorinated solvent concentration, Pd surface loading, Pd/Fe mass loading, Pd/Fe aging time, and zerovalent iron [Fe(0)] particle size. For Pd/NZVI, the solvent kinetic isotope effect [i.e., kobs(H2O)/kobs(D2O) or SKIE] for 1,1,1,2-TeCA and cis-DCE reduction increased substantially with Pd loading and Pd/NZVI concentration, evidence that multiple pathways exist for chlorinated solvent reduction. At low Pd loadings and Pd/NZVI concentrations with relatively small SKIEs (less than ~5), we propose that modest reactivity enhancements (≤ 10-fold) reflect more efficient electron transfer to 1,1,1,2-TeCA from Fe(0) facilitated by Pd nanodeposits. Much larger SKIEs (e.g., exceeding 100 for cis-DCE) imply the involvement of atomic hydrogen in more reactive systems with high Pd loadings and Pd/NZVI concentrations. Generally, evidence of SKIEs supporting a dominant role for atomic hydrogen was not observed for Pd/Fe prepared from micrometer-sized Fe(0), or for any size of nonpalladized Fe(0). During anaerobic aging of Pd/NZVI, decreases in the SKIE for 1,1,1,2-TeCA reduction suggest that atomic hydrogen will contribute to reactivity for only approximately 1 week after application.


Asunto(s)
Cloro/química , Hierro/química , Isótopos/química , Paladio/química , Solventes/química , Cinética , Microscopía Electrónica de Transmisión , Oxidación-Reducción
19.
Environ Sci Technol ; 47(10): 5031-41, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23597146

RESUMEN

Despite the widespread use of the anabolic androgen trenbolone acetate (TBA) in animal agriculture, evidence demonstrating the occurrence of TBA metabolites such as 17ß-trenbolone (17ß-TBOH), 17α-trenbolone (17α-TBOH), and trendione (TBO) is relatively scarce, potentially due to rapid transformation processes such as direct photolysis. Therefore, we investigated the phototransformation of TBA metabolites and associated ecological implications by characterizing the photoproducts arising from the direct photolysis of 17ß-TBOH, 17α-TBOH, and TBO and their associated ecotoxicity. LC-HRMS/MS analysis identified a range of hydroxylated products that were no longer photoactive, with primary photoproducts consisting of monohydroxy species and presumptive diastereomers. Also observed were higher-order hydroxylated products probably formed via subsequent reaction of primary photoproducts. NMR analysis confirmed the formation of 12,17-dihydroxy-estra-5(10),9(11),dien-3-one (12-hydroxy-TBOH; 2.2 mg), 10,12,17-trihydroxy-estra-4,9(11),dien-3-one (10,12-dihydroxy-TBOH; 0.7 mg), and a ring-opened 11,12-dialdehyde oxidation product (TBOH-11,12-dialdehyde; 1.0 mg) after irradiation of ∼14 mg of 17ß-trenbolone. Though unconfirmed by NMR, our data suggest that the formation of additional isomeric products may occur, likely due to the reactivity of the unique 4,9,11 conjugated triene structure of trenbolone. In vivo exposure studies employing Japanese medaka (Oryzias latipes) indicate that low concentrations of 17α-TBOH photoproduct mixtures can alter ovarian follicular development, and photoproducts alter whole-body 17ß-estradiol levels. Therefore, direct photolysis yields photoproducts with strong structural similarity to parent steroids, and these photoproducts still retain enough biological activity to elicit observable changes to endocrine function at trace concentrations. These data indicate that environmental transformation processes do not necessarily reduce steroid hormone ecotoxicity.


Asunto(s)
Anabolizantes/metabolismo , Procesos Fotoquímicos , Acetato de Trembolona/metabolismo , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta , Espectrometría de Masas en Tándem
20.
Artículo en Inglés | MEDLINE | ID: mdl-37006725

RESUMEN

The number and diversity of chemical contaminants in aquatic environments require versatile technologies for their removal. Here we fabricated various electrospun nanofiber mats (ENMs) and tested their ability to sorb six neonicotinoid insecticides, a model family of small, polar contaminants. ENM formulations were polyacrylonitrile (PAN) or carbon nanofibers (CNF; carbonized from PAN), with additives including carbon nanotubes (CNTs; with and without surface carboxyl groups), the cationic surfactant tetrabutyl ammonium bromide (TBAB), and/or phthalic acid (PTA; a CNF porogen). While sorption on pure PAN ENMs was low [equilibrium partition coefficients (K ENM-W ) from 0.9 to 1.2 log units (L/kg)], inclusion of CNTs and/or TBAB generally increased uptake in an additive fashion, with carboxylated CNT composites outperforming non-functionalized CNT analogs. CNF ENMs exhibited as much as a tenfold increase relative to PAN for neonicotinoid sorption, which increased with carbonization temperature. Ultimately, the optimal ENM (CNFs with carboxylated-CNTs, PTA, and carbonized at 800 °C) exhibited relatively fast uptake (equilibrium < 1 day without mixing) and surface-area-normalized capacities comparable to other carbonaceous sorbents (e.g., activated carbon). Collectively, this work demonstrates the versatility of electrospinning to produce novel sorbents specifically designed to target emerging chemical classes for applications including water treatment and passive sampling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA