Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neuroimage ; 264: 119674, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243269

RESUMEN

Brain cannabinoid 1 receptors (CB1Rs) contribute importantly to the regulation of autonomic tone, appetite, mood and cognition. Inconsistent results have been reported from positron emission tomography (PET) studies using different radioligands to examine relationships between age, gender and body mass index (BMI) and CB1R availability in healthy individuals. In this study, we examined these variables in 58 healthy individuals (age range: 18-55 years; 44 male; BMI=27.01±5.56), the largest cohort of subjects studied to date using the CB1R PET ligand [11C]OMAR. There was a significant decline in CB1R availability (VT) with age in the pallidum, cerebellum and posterior cingulate. Adjusting for BMI, age-related decline in VT remained significant in the posterior cingulate among males, and in the cerebellum among women. CB1R availability was higher in women compared to men in the thalamus, pallidum and posterior cingulate. Adjusting for age, CB1R availability negatively correlated with BMI in women but not men. These findings differ from those reported using [11C]OMAR and other radioligands such as [18F]FMPEP-d2 and [18F]MK-9470. Although reasons for these seemingly divergent findings are unclear, the choice of PET radioligand and range of BMI in the current dataset may contribute to the observed differences. This study highlights the need for cross-validation studies using both [11C]OMAR and [18F]FMPEP-d2 within the same cohort of subjects.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Índice de Masa Corporal , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Receptor Cannabinoide CB1
2.
World J Biol Psychiatry ; 24(7): 603-613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994633

RESUMEN

BACKGROUND: Rates of Cannabis Use Disorder (CUD) are highest amongst young adults. Paucity of brain tissue samples limits the ability to examine the molecular basis of cannabis related neuropathology. Proteomic studies of neuron-derived extracellular vesicles (NDEs) isolated from the biofluids may reveal markers of neuropathology in CUD. METHODS: NDEs were extracted using ExoSORT, an immunoaffinity method to enrich NDEs from plasma samples from patients with young onset CUD and matched controls. Differential proteomic profiles were explored with Label Free Quantification (LFQ) mass spectrometry. Selected proteins were validated using orthogonal methods. RESULTS: A total of 231 (±10) proteins were identified in NDE preparations from CUD and controls of which 28 were differentially abundant between groups. The difference in abundance of properdin (CFP gene) was statistically significant. SHANK1 (SHANK1 gene), an adapter protein at the post-synaptic density, was nominally depleted in the CUD NDE preparations. CONCLUSION: In this pilot study, we noted a decrease in SHANK1 protein, involved in the structural and functional integrity of glutamatergic post-synapse, a potential peripheral signature of CUD neuropathology. The study shows that LFQ mass spectrometry proteomic analysis of NDEs derived from plasma may yield important insights into the synaptic pathology associated with CUD.


Asunto(s)
Vesículas Extracelulares , Abuso de Marihuana , Trastornos Relacionados con Sustancias , Adulto Joven , Humanos , Proyectos Piloto , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA