Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(46): 19599-604, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19884510

RESUMEN

Central nervous system (CNS) trauma can result in tissue disruption, neuronal and axonal degeneration, and neurological dysfunction. The limited spontaneous CNS repair in adulthood and aging is often insufficient to overcome disability. Several investigations have demonstrated that targeting HDAC activity can protect neurons and glia and improve outcomes in CNS injury and disease models. However, the enthusiasm for pan-HDAC inhibition in treating neurological conditions is tempered by their toxicity toward a host of CNS cell types -a biological extension of their anticancer properties. Identification of the HDAC isoform, or isoforms, that specifically mediate the beneficial effects of pan-HDAC inhibition could overcome this concern. Here, we show that pan-HDAC inhibition not only promotes neuronal protection against oxidative stress, a common mediator of injury in many neurological conditions, but also promotes neurite growth on myelin-associated glycoprotein and chondroitin sulfate proteoglycan substrates. Real-time PCR revealed a robust and selective increase in HDAC6 expression due to injury in neurons. Accordingly, we have used pharmacological and genetic approaches to demonstrate that inhibition of HDAC6 can promote survival and regeneration of neurons. Consistent with a cytoplasmic localization, the biological effects of HDAC6 inhibition appear transcription-independent. Notably, we find that selective inhibition of HDAC6 avoids cell death associated with pan-HDAC inhibition. Together, these findings define HDAC6 as a potential nontoxic therapeutic target for ameliorating CNS injury characterized by oxidative stress-induced neurodegeneration and insufficient axonal regeneration.


Asunto(s)
Sistema Nervioso Central/lesiones , Sistema Nervioso Central/fisiología , Histona Desacetilasas/metabolismo , Regeneración Nerviosa , Neuritas/fisiología , Neuronas/fisiología , Animales , Apoptosis , Sistema Nervioso Central/enzimología , Corteza Cerebral/enzimología , Corteza Cerebral/fisiología , Ganglios Espinales/enzimología , Ganglios Espinales/fisiología , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Masculino , Neuritas/enzimología , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Estrés Oxidativo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley
2.
J Neurosci ; 28(1): 163-76, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171934

RESUMEN

Histone deacetylase (HDAC) inhibitors are currently in human clinical trials as antitumor drugs because of their ability to induce cell dysfunction and death in cancer cells. The toxic effects of HDAC inhibitors are also apparent in cortical neurons in vitro, despite the ability of these agents to induce significant protection in the cells they do not kill. Here we demonstrate that pulse exposure of cortical neurons (2 h) in an in vitro model of oxidative stress results in durable neuroprotection without toxicity. Protection was associated with transcriptional upregulation of the cell cycle inhibitor, p21(waf1/cip1), both in this model and in an in vivo model of permanent ischemia. Transgenic overexpression of p21(waf1/cip1) in neurons can mimic the protective effect of HDAC inhibitors against oxidative stress-induced toxicity, including death induced by glutathione depletion or peroxide addition. The protective effect of p21(waf1/cip1) in the context of oxidative stress appears to be unrelated to its ability to act in the nucleus to inhibit cell cycle progression. However, although p21(waf1/cip1) is sufficient for neuroprotection, it is not necessary for HDAC inhibitor neuroprotection, because these agents can completely protect neurons cultured from p21(waf1/cip1)-null mice. Together these findings demonstrate (1) that pulse inhibition of HDACs in cortical neurons can induce neuroprotection without apparent toxicity; (2) that p21(waf1/cip1) is sufficient but not necessary to mimic the protective effects of HDAC inhibition; and (3) that oxidative stress in this model induces neuronal cell death via cell cycle-independent pathways that can be inhibited by a cytosolic, noncanonical action of p21(waf1/cip1).


Asunto(s)
Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Histona Desacetilasas/metabolismo , Neuronas/fisiología , Estrés Oxidativo/fisiología , Análisis de Varianza , Animales , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/uso terapéutico , Ácido Glutámico/toxicidad , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Inhibidores de Histona Desacetilasas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transfección/métodos
3.
J Med Chem ; 50(13): 3054-61, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17539623

RESUMEN

We compare the ability of two structurally different classes of epigenetic modulators, namely, histone deacetylase (HDAC) inhibitors containing either a hydroxamate or a mercaptoacetamide as the zinc binding group, to protect cortical neurons in culture from oxidative stress-induced death. This study reveals that some of the mercaptoacetamide-based HDAC inhibitors are fully protective, whereas the hydroxamates show toxicity at higher concentrations. Our present results appear to be consistent with the possibility that the mercaptoacetamide-based HDAC inhibitors interact with a different subset of the HDAC isozymes [less activity at HDAC1 and 2 correlates with less inhibitor toxicity], or alternatively, are interacting selectively with only the cytoplasmic HDACs that are crucial for protection from oxidative stress.


Asunto(s)
Acetamidas/síntesis química , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/síntesis química , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Compuestos de Sulfhidrilo/síntesis química , Acetamidas/química , Acetamidas/farmacología , Acetilación , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Epigénesis Genética , Histona Desacetilasas/química , Histona Desacetilasas/genética , Histonas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología
4.
ChemMedChem ; 4(5): 842-52, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19350613

RESUMEN

We compare three structurally different classes of histone deacetylase (HDAC) inhibitors that contain benzamide, hydroxamate, or thiol groups as the zinc binding group (ZBG) for their ability to protect cortical neurons in culture from cell death induced by oxidative stress. This study reveals that none of the benzamide-based HDAC inhibitors (HDACIs) provides any neuroprotection whatsoever, in distinct contrast to HDACIs that contain other ZBGs. Some of the sulfur-containing HDACIs, namely the thiols, thioesters, and disulfides present modest neuroprotective activity but show toxicity at higher concentrations. Taken together, these data demonstrate that the HDAC6-selective mercaptoacetamides that were reported previously provide the best protection in the homocysteic acid model of oxidative stress, thus further supporting their study in animal models of neurodegenerative diseases.


Asunto(s)
Benzamidas/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores de Histona Desacetilasas , Fármacos Neuroprotectores/síntesis química , Compuestos de Sulfhidrilo/química , Animales , Apoptosis , Benzamidas/química , Benzamidas/farmacología , Proteínas Portadoras/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Modelos Biológicos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley
5.
ChemMedChem ; 4(7): 1095-105, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19396896

RESUMEN

A series of benzolactam compounds were synthesized, some of which caused a concentration-dependent increase in sAPPalpha and decrease in Abeta production in the concentration range of 0.1-10 microM. Moreover, some compounds showed neuroprotective effects in the 10-20 microM range in the HCA cortical neuron model of oxidative stress and no toxicity in measurements of neuron viability by MTT assay, even at the highest concentrations tested (20 microM). Alzheimer's disease (AD) is a well-studied neurodegenerative process characterized by the presence of amyloid plaques and neurofibrillary tangles. In this study, a series of protein kinase C (PKC) activators were investigated, some of which also exhibit histone deacetylase (HDAC) inhibitory activity, under the hypothesis that such compounds might provide a new path forward in the discovery of drugs for the treatment of AD. The PKC-activating properties of these drugs were expected to enhance the alpha-secretase pathway in the processing of amyloid precursor protein (APP), while their HDAC inhibition was anticipated to confer neuroprotective activity. We found that benzolactams 9 and 11-14 caused a concentration-dependent increase in sAPPalpha and decrease in beta-amyloid (Abeta) production in the concentration range of 0.1-10 microM, consistent with a shift of APP metabolism toward the alpha-secretase-processing pathway. Moreover, compounds 9-14 showed neuroprotective effects in the 10-20 microM range in the homocysteate (HCA) cortical neuron model of oxidative stress. In parallel, we found that the most neuroprotective compounds caused increased levels of histone acetylation (H4), thus indicating their likely ability to inhibit HDAC activity. As the majority of the compounds studied also show nanomolar binding affinities for PKC, we conclude that it is possible to design, de novo, agents that combine both PKC-activating properties along with HDAC inhibitory properties. Such agents would be capable of modulating amyloid processing while showing neuroprotection. These findings may offer a new approach to therapies that exhibit disease-modifying effects, as opposed to symptomatic relief, in the treatment of AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Histona Desacetilasas/metabolismo , Lactamas/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteína Quinasa C/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Línea Celular , Simulación por Computador , Inhibidores de Histona Desacetilasas , Humanos , Lactamas/síntesis química , Lactamas/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Proteína Quinasa C/química , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA