Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Methods ; 21(7): 1306-1315, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649742

RESUMEN

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Realidad Virtual , Animales , Encéfalo/diagnóstico por imagen , Ratones , Neuronas , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Humanos
2.
EMBO Rep ; 24(10): e55981, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37560809

RESUMEN

Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.

3.
Mol Ther ; 31(8): 2408-2421, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37408309

RESUMEN

Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias , Animales , Humanos , Tejido Adiposo/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Péptidos/farmacología , Preparaciones Farmacéuticas/metabolismo , Calidad de Vida
4.
Cancer Metastasis Rev ; 41(3): 517-547, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074318

RESUMEN

Obesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective treatments and preventive measures.


Asunto(s)
Adrenérgicos , Neoplasias , Tejido Adiposo , Matriz Extracelular , Humanos , Neoplasias/epidemiología , Obesidad/complicaciones
5.
EMBO J ; 34(3): 344-60, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25510864

RESUMEN

In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction.


Asunto(s)
Glucocorticoides/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , MicroARNs/metabolismo , Obesidad/metabolismo , Animales , Línea Celular , Femenino , Silenciador del Gen , Glucocorticoides/genética , Humanos , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , MicroARNs/genética , Obesidad/genética , Triglicéridos/genética , Triglicéridos/metabolismo
6.
J Exp Bot ; 70(3): 1049-1061, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30462254

RESUMEN

Bax-inhibitor 1 (BI-1) is a cell death suppressor conserved in all eukaryotes that modulates cell death in response to abiotic stress and pathogen attack in plants. However, little is known about its role in the establishment of symbiotic interactions. Here, we demonstrate the functional relevance of an Arabidopsis thaliana BI-1 homolog (PvBI-1a) to symbiosis between the common bean (Phaseolus vulgaris) and Rhizobium tropici. We show that the changes in expression of PvBI-1a observed during early symbiosis resemble those of some defence response-related proteins. By using gain- and loss-of-function approaches, we demonstrate that the overexpression of PvBI-1a in the roots of common bean increases the number of rhizobial infection events (and therefore the final number of nodules per root), but induces the premature death of nodule cells, affecting their nitrogen fixation efficiency. Nodule morphological alterations are known to be associated with changes in the expression of genes tied to defence, autophagy, and vesicular trafficking. Results obtained in the present work suggest that BI-1 has a dual role in the regulation of programmed cell death during symbiosis, extending our understanding of its critical function in the modulation of host immunity while responding to beneficial microbes.


Asunto(s)
Proteínas de la Membrana/genética , Phaseolus/genética , Proteínas de Plantas/genética , Rhizobium tropici/fisiología , Apoptosis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Phaseolus/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Simbiosis/genética
7.
PLoS Genet ; 11(10): e1005561, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26440364

RESUMEN

In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state.


Asunto(s)
Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Obesidad/genética , Proteína Fosfatasa 2/genética , Proteínas Quinasas Activadas por AMP/genética , Animales , Carbohidratos de la Dieta/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina/genética , Lipogénesis/genética , Hígado/metabolismo , Ratones , Obesidad/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
8.
J Magn Reson Imaging ; 45(2): 369-380, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27421080

RESUMEN

PURPOSE: To evaluate the volume and changes of human brown adipose tissue (BAT) in vivo following exposure to cold using magnetic resonance imaging (MRI). MATERIALS AND METHODS: The clavicular region of 10 healthy volunteers was examined with a 3T MRI system. One volunteer participated twice. A cooling vest that was circulated with temperature-controlled water was used to expose each volunteer to a cold environment. Three different water temperature phases were employed: baseline (23°C, 20 min), cooling (12°C, 90 min), and a final warming phase (37°C, 30 min). Temperatures of the water in the circuit, of the body, and at the back skin of the volunteers were monitored with fiberoptic temperature probes. Applying the 2-point DIXON pulse sequence every 5 minutes, fat fraction (FF) maps were determined and evaluated over time to distinguish between brown and white adipose tissue. RESULTS: Temperature measurements showed a decrease of 3.8 ± 1.0°C of the back skin temperature, while the body temperature stayed constant at 37.2 ± 0.9°C. Focusing on the two interscapular BAT depots, a mean FF decrease of -2.9 ± 2.0%/h (P < 0.001) was detected during cold stimulation in a mean absolute volume of 1.31 ± 1.43 ml. Also, a correlation of FF decrease to back skin temperature decrease was observed in all volunteers (correlation coefficients: |r| = [0.51; 0.99]). CONCLUSION: We found that FF decreases in BAT begin immediately with mild cooling of the body and continue during long-time cooling. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:369-380.


Asunto(s)
Tejido Adiposo Pardo/anatomía & histología , Tejido Adiposo Pardo/fisiología , Adiposidad/fisiología , Frío , Respuesta al Choque por Frío/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Temperatura Corporal/fisiología , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Tamaño de los Órganos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Rev Esp Enferm Dig ; 109(4): 242-249, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28229612

RESUMEN

BACKGROUND: Men who have sex with men (MSM) infected with human immunodeficiency virus (HIV) have the highest risk of developing anal cancer (AC). The objective of this study was to describe our screening implementation program in this population, and report the prevalence of human papillomavirus (HPV) anal infection, and cytological and histological findings in a Spanish medium-size community (Vigo, Spain). METHOD: Prospective cohort analysis of 240 HIV-infected MSM. Cellular anal sample and high risk HPV (HR-HPV)-tests were performed to study cytological changes and HPV genotyping. High resolution anoscopy (HRA) was performed in 209 patients. Results were analyzed with respect to epidemiological, clinical and analytical factors. RESULTS: Of 209 patients selected for HRA, the prevalence of HR-HPV anal infection, cytological and histological alterations was 85.6%, 47.5%, and 39.8%, respectively. Sensitivity and specificity for ≥ ASCUS (atypia of squamous cells of undetermined significance) cytology in relation to histological alterations were 61% and 85%, (OR: 8.7; IC 95%: 4.4-17.2), respectively. Observed concordance between high-grade squamous intraepithelial lesion (HSIL) cytology and HSIL anal intraepithelial neoplasia types 2 and 3 (AIN-2/3) histology was 64% (OR: 11.4; IC 95%: 3.6-36.7). One patient with HSIL cytology presented a prevalent anal squamous carcinoma. CONCLUSIONS: HRA was feasible with similar results to relevant groups. There was a high prevalence of anal HR-HPV infection, and cytological and histological alterations.


Asunto(s)
Neoplasias del Ano/diagnóstico , Infecciones por VIH/complicaciones , Infecciones por Papillomavirus/diagnóstico , Adulto , Neoplasias del Ano/epidemiología , Estudios de Cohortes , Estudios Transversales , Infecciones por VIH/epidemiología , Homosexualidad Masculina , Humanos , Masculino , Tamizaje Masivo , Persona de Mediana Edad , Infecciones por Papillomavirus/epidemiología , Lesiones Precancerosas/diagnóstico , Prevalencia , Estudios Prospectivos , Factores de Riesgo , Conducta Sexual
10.
Recent Results Cancer Res ; 208: 219-242, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27909910

RESUMEN

Multiple epidemiological studies demonstrated that overweight and obesity significantly increase the risk of several types of cancer. As the prevalence of obesity is dramatically rising, it is expected that it will represent one of the major lifestyle-associated risk factors for cancer development in the near future. Numerous recent studies expanded knowledge about key players and pathways, which are deregulated in the obese state and potentially promote cancer initiation, progression and aggressiveness via remote and local effects. These players include (but are not limited to) insulin/IGF, adipokines and inflammatory signaling molecules as well as metabolites. Nevertheless, the detailed mechanisms linking obesity and malignant transformation at the systemic, cellular and molecular level still demand further investigation. Additionally, dysfunctional molecular metabolic pathways appear to be specific for distinct cancer entities, thereby yet precluding definition of a common principle. This chapter will present an overview of the current knowledge of molecular nodes linking obesity and cancer and will briefly touch upon potential therapy options addressing metabolic cancer etiologies.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/metabolismo , Neoplasias/etiología , Obesidad/complicaciones , Tejido Adiposo/fisiopatología , Adiposidad , Animales , Transformación Celular Neoplásica/patología , Metabolismo Energético , Microbioma Gastrointestinal , Humanos , Mediadores de Inflamación/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Obesidad/metabolismo , Obesidad/fisiopatología , Factores de Riesgo , Transducción de Señal
12.
Enferm Infecc Microbiol Clin ; 32(10): 676-80, 2014 Dec.
Artículo en Español | MEDLINE | ID: mdl-24182418

RESUMEN

Anal cancer is uncommon in the general population, however its incidence is increasing significantly in certain risk groups, mainly in men who have sex with men, and particularly those infected with human immunodeficiency virus. High resolution anoscopy technique is currently considered the standard in the diagnosis of anal intraepithelial neoplasia, but at present there is no agreed standard method between health areas. High resolution anoscopy is an affordable technique that can be critical in the screening of anal carcinoma and its precursor lesions, but is not without difficulties. We are currently studying the most effective strategy for managing premalignant anal lesions, and with this article we attempt to encourage other groups interested in reducing the incidence of an increasing neoplasia.


Asunto(s)
Neoplasias del Ano/patología , Proctoscopía , Algoritmos , Neoplasias del Ano/etiología , Infecciones por VIH/complicaciones , Humanos
13.
ACS Infect Dis ; 10(2): 606-623, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38205780

RESUMEN

The emergence of hypervirulent Klebsiella pneumoniae (hvKP) strains poses a significant threat to public health due to high mortality rates and propensity to cause severe community-acquired infections in healthy individuals. The ability to form biofilms and produce a protective capsule contributes to its enhanced virulence and is a significant challenge to effective antibiotic treatment. Polyphosphate kinase 1 (PPK1) is an enzyme responsible for inorganic polyphosphate synthesis and plays a vital role in regulating various physiological processes in bacteria. In this study, we investigated the impact of polyP metabolism on the biofilm and capsule formation and virulence traits in hvKP using Dictyostelium discoideum amoeba as a model host. We found that the PPK1 null mutant was impaired in biofilm and capsule formation and showed attenuated virulence in D. discoideum compared to the wild-type strain. We performed a proteomic analysis to gain further insights into the underlying molecular mechanism. The results revealed that the PPK1 mutant had a differential expression of proteins involved in capsule synthesis (Wzi-Ugd), biofilm formation (MrkC-D-H), synthesis of the colibactin genotoxin precursor (ClbB), as well as proteins associated with the synthesis and modification of lipid A (ArnB-LpxC-PagP). These proteomic findings corroborate the phenotypic observations and indicate that the PPK1 mutation is associated with impaired biofilm and capsule formation and attenuated virulence in hvKP. Overall, our study highlights the importance of polyP synthesis in regulating extracellular biomolecules and virulence in K. pneumoniae and provides insights into potential therapeutic targets for treating K. pneumoniae infections.


Asunto(s)
Dictyostelium , Klebsiella pneumoniae , Humanos , Virulencia , Klebsiella pneumoniae/genética , Polifosfatos , Proteómica , Biopelículas
14.
Nat Cancer ; 4(11): 1544-1560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749321

RESUMEN

Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.


Asunto(s)
Tejido Adiposo Blanco , Caquexia , Neoplasias , Receptor Notch1 , Animales , Humanos , Masculino , Ratones , Tejido Adiposo Blanco/patología , Caquexia/patología , Neoplasias/complicaciones , Transducción de Señal , Tretinoina , Receptor Notch1/metabolismo
15.
PLoS Genet ; 5(7): e1000541, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19578398

RESUMEN

Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT-PCR, and RACE-PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lep(ob) background, the diabetogenic Zfp69(SJL) allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.


Asunto(s)
Clonación Molecular , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética , Tejido Adiposo/metabolismo , Animales , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Dedos de Zinc
16.
Comput Methods Programs Biomed ; 220: 106818, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35483271

RESUMEN

BACKGROUND AND OBJECTIVE: As deep learning faces a reproducibility crisis and studies on deep learning applied to neuroimaging are contaminated by methodological flaws, there is an urgent need to provide a safe environment for deep learning users to help them avoid common pitfalls that will bias and discredit their results. Several tools have been proposed to help deep learning users design their framework for neuroimaging data sets. Software overview: We present here ClinicaDL, one of these software tools. ClinicaDL interacts with BIDS, a standard format in the neuroimaging field, and its derivatives, so it can be used with a large variety of data sets. Moreover, it checks the absence of data leakage when inferring the results of new data with trained networks, and saves all necessary information to guarantee the reproducibility of results. The combination of ClinicaDL and its companion project Clinica allows performing an end-to-end neuroimaging analysis, from the download of raw data sets to the interpretation of trained networks, including neuroimaging preprocessing, quality check, label definition, architecture search, and network training and evaluation. CONCLUSIONS: We implemented ClinicaDL to bring answers to three common issues encountered by deep learning users who are not always familiar with neuroimaging data: (1) the format and preprocessing of neuroimaging data sets, (2) the contamination of the evaluation procedure by data leakage and (3) a lack of reproducibility. We hope that its use by researchers will allow producing more reliable and thus valuable scientific studies in our field.


Asunto(s)
Aprendizaje Profundo , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Reproducibilidad de los Resultados
17.
Int J Pharm ; 611: 121292, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34780927

RESUMEN

The prevalence of chronic and acute wounds, as well as the complexity of their treatment represent a great challenge for health systems around the world. In this context, the development of bioactive wound dressings that release active agents to prevent infections and promote wound healing, appears as the most promising solution. In this work, we develop an antibacterial and biocompatible wound dressing material made from coaxial electrospun fibers of poly(styrene-co-maleic anhydride) and poly(vinyl alcohol) (PSMA@PVA). The coaxial configuration of the fibers consists of a shell of poly (styrene-co-maleic anhydride) containing a variable concentration of silver nanoparticles (AgNPs) 0.1-0.6 wt% as antibacterial agent, and a core of PVA containing 1 wt% allantoin as healing agent. The fibers present diameters between 0.72 and 1.7 µm. The release of Ag+ in a physiological medium was studied for 72 h, observing a burst release during the first 14 h and then a sustained and controlled release during the remaining 58 h. Allantoin release curves showed significant release only after 14 h. The meshes showed an antibacterial activity against Pseudomonas aeruginosa and Bacillus subtilis that correlates with the amount of AgNPs incorporated and the release rate of Ag+. Indeed, meshes containing 0.3 and 0.6 wt% of AgNPs showed a 99.99% inhibition against both bacteria. The adherence and cell viability of the meshes were evaluated in mouse embryonic fibroblasts NIH/3T3, observing a significant increase in cell viability after 72 h of incubation accompanied by a reduced adhesion of fibroblasts that decreased in the presence of the active agents. These results show that the material prepared here is capable of significantly promoting fibroblast cell proliferation but without strong adherence, which makes it an ideal material for wound dressings with non-adherent characteristics and with potential for wound healing.


Asunto(s)
Nanopartículas del Metal , Alcohol Polivinílico , Animales , Vendajes , Proliferación Celular , Fibroblastos , Maleatos , Anhídridos Maleicos , Ratones , Poliestirenos , Plata , Estireno
18.
Adv Sci (Weinh) ; 9(29): e2104291, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36031387

RESUMEN

Aberrant energy metabolism and cell cycle regulation both critically contribute to malignant cell growth and both processes represent targets for anticancer therapy. It is shown here that depletion of the AAA+-ATPase thyroid hormone receptor interacting protein 13 (Trip13) results in mitotic cell death through a combined mechanism linking lipid metabolism to aberrant mitosis. Diminished Trip13 levels in hepatocellular carcinoma cells result in insulin-receptor-/Akt-pathway-dependent accumulation of lipid droplets, which act as functional acentriolar microtubule organizing centers disturbing mitotic spindle polarity. Specifically, the lipid-droplet-coating protein perilipin 2 (Plin2) is required for multipolar spindle formation, induction of DNA damage, and mitotic cell death. Plin2 expression in different tumor cells confers susceptibility to cell death induced by Trip13 depletion as well as treatment with paclitaxel, a spindle-interfering drug commonly used against different cancers. Thus, assessment of Plin2 levels enables the stratification of tumor responsiveness to mitosis-targeting drugs, including clinically approved paclitaxel and Trip13 inhibitors currently under development.


Asunto(s)
Insulinas , Neoplasias Hepáticas , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Humanos , Insulinas/metabolismo , Lípidos , Proteínas Mad2/metabolismo , Paclitaxel/farmacología , Perilipina-2 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Hormona Tiroidea/metabolismo
19.
Clin Cancer Res ; 28(5): 1038-1052, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965946

RESUMEN

PURPOSE: The genetic relatedness between primary and recurrent head and neck squamous cell carcinomas (HNSCC) reflects the extent of heterogeneity and therapy-driven selection of tumor subpopulations. Yet, current treatment of recurrent HNSCC ignores the molecular characteristics of therapy-resistant tumor populations. EXPERIMENTAL DESIGN: From 150 tumors, 74 primary HNSCCs were RNA sequenced and 38 matched primary/recurrent tumor pairs were both whole-exome and RNA sequenced. Transcriptome analysis determined the predominant classical (CL), basal (BA), and inflamed-mesenchymal (IMS) transcriptional subtypes according to an established classification. Genomic alterations and clonal compositions of tumors were evaluated from whole-exome data. RESULTS: Although CL and IMS subtypes were more common in primary HNSCC with low recurrence rates, the BA subtype was more prevalent and stable in recurrent tumors. The BA subtype was associated with a transcriptional signature of partial epithelial-to-mesenchymal transition (p-EMT) and early recurrence. In 44% of matched cases, the dominant subtype changed from primary to recurrent tumors, preferably from IMS to BA or CL. Expression analysis of prognostic gene sets identified upregulation of hypoxia, p-emt, and radiotherapy resistance signatures and downregulation of tumor inflammation in recurrences compared with index tumors. A relevant subset of primary/recurrent tumor pairs presented no evidence for a common clonal origin. CONCLUSIONS: Our study showed a high degree of genetic and transcriptional heterogeneity between primary/recurrent tumors, suggesting therapy-related selection of a transcriptional subtype with characteristics unfavorable for therapy. We conclude that therapy decisions should be based on genetic and transcriptional characteristics of recurrences rather than primary tumors to enable optimally tailored treatment strategies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/genética , Humanos , Recurrencia Local de Neoplasia/genética , ARN , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
20.
Cell Metab ; 4(5): 339-40, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17084708

RESUMEN

Aberrant hepatic gluconeogenesis contributes importantly to hyperglycemia in type II diabetic patients. A study by Pei et al. (2006b) identifies NR4A orphan nuclear receptors as a novel branch of cAMP-dependent regulators of hepatic glucose production under healthy and diabetic conditions.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/biosíntesis , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/fisiología , Factores de Transcripción/fisiología , Humanos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA