Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 116(6): 1667-1680, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37682777

RESUMEN

Eggplant (Solanum melongena) is an important Solanaceous crop, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. Its domestication centers and migration and diversification routes are still a matter of debate. We report the largest georeferenced and genotyped collection to this date for eggplant and its wild relatives, consisting of 3499 accessions from seven worldwide genebanks, originating from 105 countries in five continents. The combination of genotypic and passport data points to the existence of at least two main centers of domestication, in Southeast Asia and the Indian subcontinent, with limited genetic exchange between them. The wild and weedy eggplant ancestor S. insanum shows admixture with domesticated S. melongena, similar to what was described for other fruit-bearing Solanaceous crops such as tomato and pepper and their wild ancestors. After domestication, migration and admixture of eggplant populations from different regions have been less conspicuous with respect to tomato and pepper, thus better preserving 'local' phenotypic characteristics. The data allowed the identification of misclassified and putatively duplicated accessions, facilitating genebank management. All the genetic, phenotypic, and passport data have been deposited in the Open Access G2P-SOL database, and constitute an invaluable resource for understanding the domestication, migration and diversification of this cosmopolitan vegetable.


Asunto(s)
Solanum lycopersicum , Solanum melongena , Solanum melongena/genética , Domesticación , Frutas/genética , Asia
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34400501

RESUMEN

Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker-trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably. The method ReMIXTURE-using genetic data to quantify the similarity between the complement of peppers from a focal region and those from other regions-was developed to supplement traditional population genetic analyses. The results reflect a vision of pepper as a highly desirable and tradable cultural commodity, spreading rapidly throughout the globe along major maritime and terrestrial trade routes. Marker associations and possible selective sweeps affecting traits such as pungency were observed, and these traits were shown to be distributed nonuniformly across the globe, suggesting that human preferences exerted a primary influence over domesticated pepper genetic structure.


Asunto(s)
Capsicum/genética , Cromosomas de las Plantas/genética , Genética de Población , Genoma de Planta , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Capsicum/crecimiento & desarrollo , Genómica
3.
J Exp Bot ; 74(18): 5896-5916, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527560

RESUMEN

European traditional tomato varieties have been selected by farmers given their consistent performance and adaptation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-morphological traits. Comparison of the traditional varieties with a modern reference panel revealed that some traditional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predominant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone metabolism, and signalling were found within regions affecting stability. A total of 137 marker-trait associations for phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within European traditional tomato germplasm.


Asunto(s)
Solanum lycopersicum , Mapeo Cromosómico , Solanum lycopersicum/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo
4.
J Exp Bot ; 73(11): 3431-3445, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35358313

RESUMEN

A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.


Asunto(s)
Solanum lycopersicum , Alelos , Agricultores , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Solanum lycopersicum/genética , Fenotipo , Polimorfismo de Nucleótido Simple
5.
BMC Plant Biol ; 21(1): 481, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686145

RESUMEN

BACKGROUND: Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). RESULTS: A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. CONCLUSIONS: Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions.


Asunto(s)
Mapeo Cromosómico , Productos Agrícolas/genética , Frutas/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Raíces de Plantas/genética , Solanum lycopersicum/genética , Variación Genética , Genoma de Planta , Genotipo , Italia , Agricultura Orgánica , Fenotipo , Sitios de Carácter Cuantitativo , España , Estados Unidos
6.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672083

RESUMEN

Sweet pepper is one of the most important economic fruits with nutritional attributes. In this sense, the nutraceutical value of consumed products is a major concern nowadays so the content of some bioactive compounds and antioxidants (phenols, ascorbic acid, lycopene, carotenoids, chlorophylls, and antioxidant activity) was monitored in 18 sweet pepper landraces at two maturity stages (green and red). All the traits except chlorophylls significantly increased in red fruits (between 1.5- and 2.3-fold for phenols, ascorbic acid, and 2-2-diphenyl-1-picrylhydrazyl (DPPH) inhibition activity, 4.8-fold for carotenoid and 27.4-fold for lycopene content), which suggests that ripening is key for obtaining desired fruit quality. Among landraces, P-44 in green fruits is highlighted for its content in carotenoids, chlorophylls, phenols, and ascorbic acid, and P-46 for its antioxidant capacity and lycopene content. Upon maturity, P-48, P-44, and P-41 presented higher levels of phenols and lycopene, and P-39 of phenols, carotenoid, and DPPH. This work reflects a wide variability in the 18 pepper landraces at bioactive compounds concentration and in relation to fruit ripeness. The importance of traditional landraces in terms of organoleptic properties is emphasized as they are the main source of agricultural biodiversity today and could be helpful for breeders to develop new functional pepper varieties.


Asunto(s)
Antioxidantes/farmacología , Capsicum/química , Ecotipo , Fitoquímicos/farmacología , Ácido Ascórbico/análisis , Clorofila/análisis , Suplementos Dietéticos/análisis , Frutas/química , Licopeno/análisis , Fenoles/análisis , Pigmentación , Análisis de Componente Principal
7.
BMC Complement Altern Med ; 17(1): 298, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592281

RESUMEN

BACKGROUND: Metformin is an oral hypoglycemic agent frequently used in patients with type 2 diabetes. In this study, we have investigated the influence of the dietary fiber Plantago ovata husk on the pharmacokinetics of this drug when included in the diet, as well as when administered at the same time as metformin. METHODS: Six groups of 6 rabbits were used. Groups 1 to 3 were fed with standard chow and groups 4 to 6 with chow supplemented with fiber (3.5 mg/kg/day). Groups 1 and 4 received metformin intravenously (30 mg/kg). Groups 2 and 5 received metfomin orally (30 mg/kg), and number 3 and 6 were treated orally with metformin (30 mg/kg) and fiber (300 mg/kg). RESULTS: The changes caused by the inclusion of fiber in the feeding were more important in groups that received oral metformin. In this way, metformin oral bioavailability showed an increase of 34.42% when rabbits were fed with supplemented chow. CONCLUSIONS: Plantago ovata husk increased the amount of absorbed metformin when included in the diet (significant increase in AUC), and delayed its absorption when administered at the same time (significant increase in tmax).


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fibras de la Dieta/administración & dosificación , Hipoglucemiantes/farmacocinética , Metformina/farmacocinética , Extractos Vegetales/administración & dosificación , Plantago/química , Animales , Disponibilidad Biológica , Humanos , Hipoglucemiantes/administración & dosificación , Masculino , Metformina/administración & dosificación , Conejos
8.
Proc Natl Acad Sci U S A ; 110(42): 17125-30, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082112

RESUMEN

Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Frutas/enzimología , Proteínas de Plantas/biosíntesis , Sitios de Carácter Cuantitativo/fisiología , Solanum lycopersicum/enzimología , Sistema Enzimático del Citocromo P-450/genética , Regulación hacia Abajo/fisiología , Frutas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Humanos , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
9.
BMC Genomics ; 16: 257, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25880392

RESUMEN

BACKGROUND: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. RESULTS: Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and "cherry tomato" are not synonymous terms. The morphologically-based term "cherry tomato" included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. CONCLUSIONS: This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.


Asunto(s)
Polimorfismo de Nucleótido Simple , Solanum lycopersicum/genética , Cruzamiento , Evolución Molecular , Frutas/genética , Frecuencia de los Genes , Genoma de Planta , Genómica , Heterocigoto
10.
BMC Vet Res ; 11: 88, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25889369

RESUMEN

BACKGROUND: Mastitis is one of the most important diseases affecting dairy sheep. Antimicrobial drugs are often administered directly through teat to treat or prevent this disease, but data on drug distribution within glandular tissue are scarce and it cannot be estimated from concentrations in milk. Thus, the aim of this study was to investigate systemic and mammary gland distribution of enrofloxacin after intramammary administration. The drug was administered to 6 healthy lactating Assaf sheep with an injector containing an enrofloxacin preparation (1 g drug/5 g ointment). Blood samples were collected at 0, 30, 60, 90, 120, 150 and 180 min. Animals were then sedated and sacrificed, and glandular tissue samples were obtained from treated udders at 2, 4, 6 and 8 cm height. Enrofloxacin concentrations were measured in plasma and tissue samples by UV high-performed liquid chromatography. RESULTS: Mean enrofloxacin plasma concentrations were below 0.5 µg/mL. Mean tissue concentrations decreased in mammary gland with vertical distance from the teat, ranging from 356.6 µg/g at 2 cm to 95.60 µg/g at the base of the udder. Glandular tissue concentrations best fitted to a decreasing monoexponential model, and showed a good correlation with an ex vivo model previously developed. CONCLUSIONS: Enrofloxacin concentrations were effective in the entire glandular tissue against the main pathogens causing mastitis in sheep. These results suggest that this drug may be suitable to treat mastitis in sheep by intramammary administration.


Asunto(s)
Antibacterianos/farmacocinética , Fluoroquinolonas/farmacocinética , Glándulas Mamarias Animales/metabolismo , Ovinos/metabolismo , Animales , Antibacterianos/administración & dosificación , Antibacterianos/sangre , Vías de Administración de Medicamentos , Enrofloxacina , Femenino , Fluoroquinolonas/administración & dosificación , Fluoroquinolonas/sangre , Ovinos/sangre
11.
BMC Complement Altern Med ; 15: 298, 2015 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-26318340

RESUMEN

BACKGROUND: Several studies have indicated that dietary fiber may have a protective effect on gastrointestinal mucosa. The aim of this study was to evaluate the protective action of the soluble fiber Plantago ovata husk against intestinal damage. METHODS: To evaluate the anti-ulcerogenic effect on duodenal mucosa of the soluble fiber Plantago ovata husk, low-dose acetylsalicylic acid (10 mg/kg) was given orally to animals once daily for 14 or 28 days with and without Plantago ovata husk (100 mg/kg). 24 h after final dosing duodenal samples were removed for anatomopathological evaluation. Villi were examined by both light and scanning electron microscopy. RESULTS: Acetylsalicylic acid induced severe lesions in duodenal mucosa of rabbits, including erosions, epithelium disorganization, and cell vacuolization, increasing as well the amount of mononuclear and caliciform cells. Damage was much more severe in animals treated for 28 days. In groups receiving Plantago ovata husk, a significant attenuation of acetylsalicylic acid-induced lesions was already observed in group treated for 14 days, becoming more evident in those treated for 28 days, all of them with duodenal cytoarchitecture normal and similar to control animals. CONCLUSIONS: These findings suggest that Plantago ovata husk may protect intestinal mucosa probably by limiting acetylsalicylic acid penetration into epithelial cells, although further studies are needed to confirm the same effect in other experimental models of induced mucosal damage and to elucidate the mechanisms of fiber protection.


Asunto(s)
Fibras de la Dieta/farmacología , Mucosa Intestinal/efectos de los fármacos , Preparaciones de Plantas/farmacología , Plantago/química , Sustancias Protectoras/farmacología , Animales , Conejos
12.
Hortic Res ; 11(7): uhae154, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005998

RESUMEN

We developed a novel eight-way tomato multiparental advanced generation intercross (MAGIC) population to improve the accessibility of tomato relatives genetic resources to geneticists and breeders. The interspecific tomato MAGIC population (ToMAGIC) was obtained by intercrossing four accessions each of Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium, which are the weedy relative and the ancestor of cultivated tomato, respectively. The eight exotic ToMAGIC founders were selected based on a representation of the genetic diversity and geographical distribution of the two taxa. The resulting MAGIC population comprises 354 lines, which were genotyped using a new 12k tomato single primer enrichment technology panel and yielded 6488 high-quality single-nucleotide polymorphism (SNPs). The genotyping data revealed a high degree of homozygosity, an absence of genetic structure, and a balanced representation of the founder genomes. To evaluate the potential of the ToMAGIC population, a proof of concept was conducted by phenotyping it for fruit size, plant pigmentation, leaf morphology, and earliness. Genome-wide association studies identified strong associations for the studied traits, pinpointing both previously identified and novel candidate genes near or within the linkage disequilibrium blocks. Domesticated alleles for fruit size were recessive and were found, at low frequencies, in wild/ancestral populations. Our findings demonstrate that the newly developed ToMAGIC population is a valuable resource for genetic research in tomato, offering significant potential for identifying new genes that govern key traits in tomato. ToMAGIC lines displaying a pyramiding of traits of interest could have direct applicability for integration into breeding pipelines providing untapped variation for tomato breeding.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35845687

RESUMEN

The agricultural scenario of the upcoming decades will face major challenges for the increased and sustainable agricultural production and the optimization of the efficiency of water and fertilizer inputs. Considering the current and foreseen water scarcity in several marginal and arid areas and the need for a more sustainable farming production, the selection and development of cultivars suitable to grow under low-input conditions is an urgent need. In this study, we assayed 42 tomato genotypes for thirty-two morpho-physiological and agronomic traits related to plant, fruit, and root characteristics under standard (control) and no-nitrogen fertilization or water deficit (30% of the amount given to non-stressed trials) treatments in two sites (environments), which corresponded to organic farms located in Italy and Spain. A broad range of variation was found for all traits, with significant differences between the applied treatments and the cultivation sites. Dissection of genotypic (G), environmental (E), and treatment (T) factors revealed that the three main factors were highly significant for many traits, although G was the main source of variation in most cases. G × E interactions were also important, while G × T and E × T were less relevant. Only fruit weight and blossom end rot were highly significant for the triple interaction (G × E × T). Reduction of water supply significantly increased the soluble solid content in both locations, whereas both nitrogen and water stress led to a general decrease in fruit weight and total yield. Despite so, several accessions exhibited better performances than the control when cultivated under stress. Among the accessions evaluated, hybrids were promising in terms of yield performance, while overall landraces and heirlooms exhibited a better quality. This suggests the possibility of exploiting both the variation within ancient varieties and the heterosis for yield of hybrids to select and breed new varieties with better adaptation to organic farming conditions, both under optimal and suboptimal conditions. The results shed light on the strategies to develop novel varieties for organic farming, giving hints into the management of inputs to adopt for a more sustainable tomato cultivation.

14.
Hortic Res ; 9: uhac112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795386

RESUMEN

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

15.
Microorganisms ; 9(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923281

RESUMEN

Tomato leaf curl New Delhi virus (ToLCNDV) is a severe threat for cucurbit production worldwide. Resistance has been reported in several crops, but at present, there are no described accessions with resistance to ToLCNDV in cucumber (Cucumis sativus). C. sativus var. sativus accessions were mechanically inoculated with ToLCNDV and screened for resistance, by scoring symptom severity, tissue printing, and PCR (conventional and quantitative). Severe symptoms and high load of viral DNA were found in plants of a nuclear collection of Spanish landraces and in accessions of C. sativus from different geographical origins. Three Indian accessions (CGN23089, CGN23423, and CGN23633) were highly resistant to the mechanical inoculation, as well as all plants of their progenies obtained by selfing. To study the inheritance of the resistance to ToLCNDV, plants of the CGN23089 accession were crossed with the susceptible accession BGV011742, and F1 hybrids were used to construct segregating populations (F2 and backcrosses), which were mechanically inoculated and evaluated for symptom development and viral load by qPCR. The analysis of the genetic control fit with a recessive monogenic inheritance model, and after genotyping with SNPs distributed along the C. sativus genome, a QTL associated with ToLCNDV resistance was identified in chromosome 2 of cucumber.

16.
Artículo en Inglés | MEDLINE | ID: mdl-33669762

RESUMEN

In Spain, there has been a progressive increase in aging. Specifically, Leon has been one of the Spanish provinces with the highest aging index. Polypharmacy is highly prevalent among the elderly, with significant consequences for safety. The aim of this study was to assess the consumption of drugs in a nursing home in the province of Leon and establish the relationship between polypharmacy and the most common comorbid diseases. A descriptive, observational, and cross-sectional study design was used. Residents' information and treatments were collected by reviewing on medical charts, completed with clinical information obtained from the physician of the nursing home. The mean age of residents was 86.8 years, and 63.8% were female. Mean medical consumption amounted to 7.02 prescriptions. Polypharmacy was observed in 54.9% of residents, and excessive polypharmacy in 22.1%. The most commonly used medications (ATC classification) were those acting on the cardiovascular system (84.4%) and the nervous system (82.8%). A high-level of drug consumption was observed in the nursing home. Interventions should focus on those residents hospitalized the last year and with recent contact with a general practitioner. There is a need to develop a comprehensive monitoring system to assess the quality of prescriptions for nursing home residents.


Asunto(s)
Casas de Salud , Polifarmacia , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Prevalencia , España/epidemiología
17.
Front Plant Sci ; 12: 696272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276746

RESUMEN

Given the little variability among commercialised eggplants mainly in developed countries, exploring, and structuring of traditional varieties germplasm collections have become a key element for extending ecotypes and promoting biodiversity preservation and consumption. Thirty-one eggplant landraces from Spain were characterised with 22 quantitative and 14 qualitative conventional morphological descriptors. Landraces were grouped based on their fruit skin colour (black-purple, striped, white, and reddish). Landraces B7, B20, and B24 were left out for their distinctive fruit characteristics. Wide variation for plant, leaf, flower, and fruit phenology traits was observed across the local landraces, and fruit descriptors were considered the most important ones. In a second experiment, landraces, B14, B16, and B17 were selected to determine fruit quality. By contemplating the benefits provided by antioxidants and sugars for human health, pulp antioxidant capacity, total phenolic, ascorbic acid, carotenoid, flavonoid, and total sugar content were determined. Significant differences were observed across these three landraces, and B14 was highlighted for its antioxidant properties, while B17 stood out for its high sugar content. B16 did not stand out for any traits. The results indicate the wide variability in eggplants for their phenotypic and nutritional characteristics, which emphasises the importance of traditional varieties as the main source of agricultural biodiversity.

18.
Genes (Basel) ; 12(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567670

RESUMEN

Trichomes are a common morphological defense against pests, in particular, type IV glandular trichomes have been associated with resistance against different invertebrates. Cultivated tomatoes usually lack or have a very low density of type IV trichomes. Therefore, for sustainable management of this crop, breeding programs could incorporate some natural defense mechanisms, such as those afforded by trichomes, present in certain Solanum species. We have identified a S. pimpinellifolium accession with very high density of this type of trichomes. This accession was crossed with a S. lycopersicum var. cerasiforme and a S. lycopersicum var. lycopersicum accessions, and the two resulting F2 populations have been characterized and genotyped using a new genotyping methodology, K-seq. We have been able to build an ultra-dense genetic map with 147,326 SNP markers with an average distance between markers of 0.2 cm that has allowed us to perform a detailed mapping. We have used two different families and two different approaches, QTL mapping and QTL-seq, to identify several QTLs implicated in the control of trichome type IV developed in this accession on the chromosomes 5, 6, 9 and 11. The QTL located on chromosome 9 is a major QTL that has not been previously reported in S. pimpinellifolium. This QTL could be easily introgressed in cultivated tomato due to the close genetic relationship between both species.


Asunto(s)
Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Solanum lycopersicum/genética , Tricomas/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genotipo , Humanos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
19.
Front Plant Sci ; 12: 613845, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679829

RESUMEN

The performance of snake melon [Cucumis melo var. flexuosus (L.)] in organic farming was studied under high biotic and salt stress conditions. Soilborne diseases (mainly caused by Macrophomina phaseolina and Neocosmospora falciformis), combined with virus incidence [Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Tomato leaf curl New Delhi virus (ToLCNDV)] and Podosphaera xanthii attacks, reduced yield by more than 50%. Snake melon susceptibility to M. phaseolina and Monosporascus cannonballus was proved in pathogenicity tests, while it showed some degree of resistance to Neocosmospora keratoplastica and N. falciformis. On the contrary, salt stress had a minor impact, although a synergic effect was detected: yield losses caused by biotic stress increased dramatically when combined with salt stress. Under biotic stress, grafting onto the melon F1Pat81 and wild Cucumis rootstocks consistently reduced plant mortality in different agroecological conditions, with a better performance compared to classic Cucurbita commercial hybrids. Yield was even improved under saline conditions in grafted plants. A negative effect was detected, though, on consumer acceptability, especially with the use of Cucurbita rootstocks. Cucumis F1Pat81 rootstock minimized this side effect, which was probably related to changes in the profile of sugars, acids, and volatiles. Grafting affected sugars and organic acid contents, with this effect being more accentuated with the use of Cucurbita rootstocks than with Cucumis. In fact, the latter had a higher impact on the volatile organic compound profile than on sugar and acid profile, which may have resulted in a lower effect on consumer perception. The use of Cucumis rootstocks seems to be a strategy to enable organic farming production of snake melon targeted to high-quality markets in order to promote the cultivation of this neglected crop.

20.
Hortic Res ; 7(1): 174, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328432

RESUMEN

The wild Solanum pimpinellifolium (SP) and the weedy S. lycopersicum var. cerasiforme (SLC) are largely unexploited genetic reservoirs easily accessible to breeders, as they are fully cross-compatible with cultivated tomato (S. lycopersicum var. lycopersicum). We performed a comprehensive morphological and genomic characterization of four wild SP and four weedy SLC accessions, selected to maximize the range of variation of both taxa. These eight accessions are the founders of the first tomato interspecific multi-parent advanced generation inter-cross (MAGIC) population. The morphoagronomic characterization was carried out with 39 descriptors to assess plant, inflorescence, fruit and agronomic traits, revealing the broad range of diversity captured. Part of the morphological variation observed in SP was likely associated to the adaptation of the accessions to different environments, while in the case of SLC to both human activity and adaptation to the environment. Whole-genome resequencing of the eight accessions revealed over 12 million variants, ranging from 1.2 to 1.9 million variants in SLC and from 3.1 to 4.8 million in SP, being 46.3% of them (4,897,803) private variants. The genetic principal component analysis also confirmed the high diversity of SP and the complex evolutionary history of SLC. This was also reflected in the analysis of the potential footprint of common ancestors or old introgressions identified within and between the two taxa. The functional characterization of the variants revealed a significative enrichment of GO terms related to changes in cell walls that would have been negatively selected during domestication and breeding. The comprehensive morphoagronomic and genetic characterization of these accessions will be of great relevance for the genetic analysis of the first interspecific MAGIC population of tomato and provides valuable knowledge and tools to the tomato community for genetic and genomic studies and for breeding purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA