Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 33(17): e17482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39082382

RESUMEN

The spread and adaptation of fungal plant pathogens in agroecosystems are facilitated by environmental homogeneity. Metagenomic sequencing of infected tissues allowed us to monitor eco-evolutionary dynamics and interactions between host, pathogen and plant microbiome. Exserohilum turcicum, the causal agent of northern corn leaf blight (NCLB) in maize, is distributed in multiple clonal lineages throughout Europe. To characterize regional pathogen diversity, we conducted metagenomic DNA sequencing on 241 infected leaf samples from the highly susceptible Swiss maize landrace Rheintaler Ribelmais, collected over 3 years (2016-2018) from an average of 14 agricultural farms within the Swiss Rhine Valley. All major European clonal lineages of E. turcicum were identified. Lineages differ by their mating types which indicates potential for sexual recombination and rapid evolution of new pathogen strains, although we found no evidence of recent recombination. The associated eukaryotic and prokaryotic leaf microbiome exhibited variation in taxonomic diversity between years and locations and is likely influenced by local weather conditions. A network analysis revealed distinct clusters of eukaryotic and prokaryotic taxa that correlates with the frequency of E. turcicum sequencing reads, suggesting causal interactions. Notably, the yeast genus Metschnikowia exhibited a strongly negative association with E. turcicum, supporting its known potential as biological control agent against fungal pathogens. Our findings show that metagenomic sequencing is a useful tool for analysing the role of environmental factors and potential pathogen-microbiome interactions in shaping pathogen dynamics and evolution, suggesting their potential for effective pathogen management strategies.


Asunto(s)
Ascomicetos , Metagenómica , Microbiota , Enfermedades de las Plantas , Hojas de la Planta , Zea mays , Zea mays/microbiología , Suiza , Ascomicetos/genética , Hojas de la Planta/microbiología , Enfermedades de las Plantas/microbiología , Microbiota/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-28630206

RESUMEN

Colistin is a last-resort antibiotic commonly used against multidrug-resistant strains of Pseudomonas aeruginosa To investigate the potential for in situ evolution of resistance against colistin and to map the molecular targets of colistin resistance, we exposed two P. aeruginosa isolates to colistin using a continuous-culture device known as a morbidostat. As a result, colistin resistance reproducibly increased 10-fold within 10 days and 100-fold within 20 days, along with highly stereotypic yet strain-specific mutation patterns. The majority of mutations hit the pmrAB two-component signaling system and genes involved in lipopolysaccharide (LPS) synthesis, including lpxC, pmrE, and migA We tracked the frequencies of all arising mutations by whole-genome deep sequencing every 3 to 4 days to obtain a detailed picture of the dynamics of resistance evolution, including competition and displacement among multiple resistant subpopulations. In 7 out of 18 cultures, we observed mutations in mutS along with a mutator phenotype that seemed to facilitate resistance evolution.


Asunto(s)
Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mutación/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA