Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(1): e18015, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938877

RESUMEN

Insulin resistance is a significant contributor to the development of type 2 diabetes (T2D) and is associated with obesity, physical inactivity, and low maximal oxygen uptake. While intense and prolonged exercise may have negative effects, physical activity can have a positive influence on cellular metabolism and the immune system. Moderate exercise has been shown to reduce oxidative stress and improve antioxidant status, whereas intense exercise can increase oxidative stress in the short term. The impact of exercise on pro-inflammatory cytokine production is complex and varies depending on intensity and duration. Exercise can also counteract the harmful effects of ageing and inflamm-ageing. This review aims to examine the molecular pathways altered by exercise in non-obese individuals at higher risk of developing T2D, including glucose utilization, lipid metabolism, mitochondrial function, inflammation and oxidative stress, with the potential to improve insulin sensitivity. The focus is on understanding the potential benefits of exercise for improving insulin sensitivity and providing insights for future targeted interventions before onset of disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Ejercicio Físico , Insulina/metabolismo
2.
Hepatology ; 77(2): 501-511, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35989577

RESUMEN

BACKGROUND AND AIMS: Porto-sinusoidal vascular disorder (PSVD) is a group of liver vascular diseases featuring lesions encompassing the portal venules and sinusoids unaccompanied by cirrhosis, irrespective of the presence/absence of portal hypertension. It can occur secondary to coagulation disorders or insult by toxic agents. However, the cause of PSVD remains unknown in most cases. Hereditary cases of PSVD are exceptionally rare, but they are of particular interest and may unveil genetic alterations and molecular mechanisms associated with the disease. APPROACH AND RESULTS: We performed genome sequencing of four patients and two healthy individuals of a large multigenerational Lebanese family with PSVD and identified a heterozygous deleterious variant (c.547C>T, p.R183W) of FCH and double SH3 domains 1 ( FCHSD1 ), an uncharacterized gene, in patients. This variant segregated with the disease, and its pattern of inheritance was suggestive of autosomal dominant with variable expressivity. RNA structural modelling of human FCHSD1 suggests that the C-to-T substitution at position 547, corresponding to FCHSD1R183W , may increase both messenger RNA (mRNA) and protein stability and its interaction with MTOR-associated protein, LST8 homolog, a key protein of the mechanistic target of rapamycin (mTOR pathway). These predictions were substantiated by biochemical analyses, which showed that FCHSD1R183W induced high FCHSD1 mRNA stability, overexpression of FCHSD1 protein, and an increase in mTORC1 activation. This human FCHSD1 variant was introduced into mice through CRISPR/Cas9 genome editing. Nine out of the 15 mice carrying the human FCHSD1R183W variant mimicked the phenotype of human PSVD, including splenomegaly and enlarged portal vein. CONCLUSIONS: Aberrant FCHSD1 structure and function leads to mTOR pathway overactivation and may cause PSVD.


Asunto(s)
Hipertensión Portal , Enfermedades Vasculares , Humanos , Ratones , Animales , Predisposición Genética a la Enfermedad , Familia Extendida , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Hipertensión Portal/metabolismo , Genómica
3.
J Org Chem ; 89(2): 957-974, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38175810

RESUMEN

The isocyanide group is the chameleon among the functional groups in organic chemistry. Unlike other multiatom functional groups, where the electrophilic and nucleophilic moieties are typically separated, isocyanides combine both functionalities in the terminal carbon. This unique feature can be rationalized using the frontier orbital concept and has significant implications for its intermolecular interactions and the reactivity of the functional group. In this study, we perform a Cambridge Crystallographic Database-supported analysis of isocyanide intramolecular interactions to investigate the intramolecular interactions of isocyanides in the solid state, excluding isocyanide-metal complexes. We discuss examples of different interaction classes, including the isocyanide as a hydrogen bond acceptor (RNC···HX), halogen bonding (RNC···X), and interactions involving the isocyanide and carbon atoms (RNC···C). The latter interaction serves as an intriguing illustration of a Bürgi-Dunitz trajectory and represents a crucial experimental detail in the well-known multicomponent reactions such as the Ugi- and Passerini-type mechanisms. Understanding the spectrum of intramolecular interactions that isocyanides can undergo holds significant implications in fields such as medicinal chemistry, materials science, and asymmetric catalysis.

4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845009

RESUMEN

Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein-like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen-Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Escherichia coli/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Espectrometría de Masas , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Proteínas/genética
6.
Beilstein J Org Chem ; 20: 950-958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711589

RESUMEN

Tetrazole is widely utilized as a bioisostere for carboxylic acid in the field of medicinal chemistry and drug development, enhancing the drug-like characteristics of various molecules. Typically, tetrazoles are introduced from their nitrile precursors through late-stage functionalization. In this work, we propose a novel strategy involving the use of diversely protected, unprecedented tetrazole aldehydes as building blocks. This approach facilitates the incorporation of the tetrazole group into multicomponent reactions or other chemistries, aiding in the creation of a variety of complex, drug-like molecules. These innovative tetrazole building blocks are efficiently and directly synthesized using a Passerini three-component reaction (PT-3CR), employing cost-effective and readily available materials. We further showcase the versatility of these new tetrazole building blocks by integrating the tetrazole moiety into various multicomponent reactions (MCRs), which are already significantly employed in drug discovery. This technique represents a unique and complementary method to existing tetrazole synthesis processes. It aims to meet the growing demand for tetrazole-based compound libraries and novel scaffolds, which are challenging to synthesize through other methods.

7.
J Org Chem ; 88(9): 5242-5247, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35881912

RESUMEN

This year represents the 100th anniversary of the discovery of the Passerini three-component reaction. The related Ugi four-compound reaction was discovered 37 years after the Passerini reaction. Undoubtedly, both reactions are very important multicomponent reactions but the Ugi reactions outperform the Passerini reactions in terms of combinatorial space according to the equation xy [x is the number of building blocks per component, and y is the order of the multicomponent reaction (for Passerini, y = 3; for Ugi, y = 4)]. In this work, a historical but contemporary perspective of the discoveries and innovations of the two reactions is given. From a bird's eye view and in a more general sense, the discovery of novel reactions is discussed and how it relates to inventions and innovations.

8.
J Org Chem ; 88(14): 9823-9834, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37431831

RESUMEN

Guanine is one out of five endogenous nucleobases and of key interest in drug discovery and chemical biology. Hitherto, the synthesis of guanine derivatives involves lengthy multistep sequential synthesis of low overall diversity, resulting in the quest for innovation. Using a "single-atom skeletal editing" approach, we designed 2-aminoimidazo[2,1-f][1,2,4]triazin-4(3H)-one as a guanine isostere, conserving the biologically important HBA-HBD-HBD (HBA = hydrogen bond acceptor; HBD = hydrogen bond donor) substructure. We realized our design by a simple one-pot two-step method combining the Groebke-Blackburn-Bienaymé reaction (GBB-3CR) and a deprotection reaction to assemble the innovative guanine isosteres in moderate to good yields. Our innovative, diverse, short, and reliable multicomponent reaction synthesis will add to the toolbox of guanine isostere syntheses.


Asunto(s)
Descubrimiento de Drogas , Ciclización
9.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175541

RESUMEN

Healthy non-obese insulin resistant (IR) individuals are at higher risk of metabolic syndrome. The metabolic signature of the increased risk was previously determined. Physical activity can lower the risk of insulin resistance, but the underlying metabolic pathways remain to be determined. In this study, the common and unique metabolic signatures of insulin sensitive (IS) and IR individuals in active and sedentary individuals were determined. Data from 305 young, aged 20-30, non-obese participants from Qatar biobank, were analyzed. The homeostatic model assessment of insulin resistance (HOMA-IR) and physical activity questionnaires were utilized to classify participants into four groups: Active Insulin Sensitive (ISA, n = 30), Active Insulin Resistant (IRA, n = 20), Sedentary Insulin Sensitive (ISS, n = 21) and Sedentary Insulin Resistant (SIR, n = 23). Differences in the levels of 1000 metabolites between insulin sensitive and insulin resistant individuals in both active and sedentary groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. The study indicated significant differences in fatty acids between individuals with insulin sensitivity and insulin resistance who engaged in physical activity, including monohydroxy, dicarboxylate, medium and long chain, mono and polyunsaturated fatty acids. On the other hand, the sedentary group showed changes in carbohydrates, specifically glucose and pyruvate. Both groups exhibited alterations in 1-carboxyethylphenylalanine. The study revealed different metabolic signature in insulin resistant individuals depending on their physical activity status. Specifically, the active group showed changes in lipid metabolism, while the sedentary group showed alterations in glucose metabolism. These metabolic discrepancies demonstrate the beneficial impact of moderate physical activity on high risk insulin resistant healthy non-obese individuals by flipping their metabolic pathways from glucose based to fat based, ultimately leading to improved health outcomes. The results of this study carry significant implications for the prevention and treatment of metabolic syndrome in non-obese individuals.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Humanos , Insulina/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Insulina Regular Humana , Ejercicio Físico , Glucosa , Glucemia/metabolismo
10.
J Am Chem Soc ; 144(41): 19070-19077, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36195578

RESUMEN

The discovery and development of new drugs against malaria remain urgent. Aspartate transcarbamoylase (ATC) has been suggested to be a promising target for antimalarial drug development. Here, we describe a series of small-molecule inhibitors of P. falciparum ATC with low nanomolar binding affinities that selectively bind to a previously unreported allosteric pocket, thereby inhibiting ATC activation. We demonstrate that the buried allosteric pocket is located close to the traditional ATC active site and that reported compounds maintain the active site of PfATC in its low substrate affinity/low activity conformation. These compounds inhibit parasite growth in blood stage cultures at single digit micromolar concentrations, whereas limited effects were seen against human normal lymphocytes. To our knowledge, this series represent the first PfATC-specific allosteric inhibitors.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum , Ácido Aspártico/metabolismo , Dominio Catalítico
11.
J Org Chem ; 87(11): 7085-7096, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35549475

RESUMEN

Discovering novel synthetic routes for rigid nitrogen-containing polyheterocycles using sustainable, atom-economical, and efficient (= short) synthetic pathways is of high interest in organic chemistry. Here, we describe an operationally simple and short synthesis of the privileged scaffold dihydropyrrolo[1,2-a]pyrazine-dione from readily accessible starting materials. The alkaloid-type polycyclic scaffold with potential bioactivity was achieved by a multicomponent reaction (MCR)-based protocol via a Ugi four-component reaction and Pictet-Spengler sequence under different conditions, yielding a diverse library of products.


Asunto(s)
Alcaloides , Alcaloides/química
12.
J Org Chem ; 87(21): 14463-14475, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36282152

RESUMEN

We achieved a divergent synthesis of isoquinolin-2(1H)-yl-acetamides (16 examples, up to 90% yields) and regioselective isoindolin-2-yl-acetamides (14 examples, up to 93% yields) in moderate to good yields by reacting various substituted ethanones or terminal alkynes with Ugi-4CR intermediates via an ammonia-Ugi-4CR/Copper(I)-catalyzed annulation sequence reaction. The same intermediate thus gives 2D distant but 3D closely related scaffolds, which can be of high interest in exploiting chemistry space on a receptor. The scopes and limitations of these efficient sequence reactions are described, as well as gram-scale synthesis.


Asunto(s)
Acetamidas
13.
J Org Chem ; 87(19): 13023-13033, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36095044

RESUMEN

The rapid synthesis of diverse substituted polycyclic quinazolinones was achieved by two orthogonal Ugi four-component reaction (Ugi-4CR)-based protocols: the first two-step approach via an ammonia-Ugi-4CR followed by palladium-catalyzed annulation; in the second approach, cyanamide was used unprecedently as an amine component in Ugi-4CR followed by an AIBN/tributyltin hydride-induced radical reaction. Like no other method, MCR and cyclization could efficiently construct many biologically interesting compounds with tailored properties in very few steps.


Asunto(s)
Paladio , Quinazolinonas , Aminas , Amoníaco , Cianamida
14.
Bioorg Chem ; 129: 106124, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36174446

RESUMEN

The present work provided in vitro anticancer investigation of novel spirooxindole based benzimidazole scaffold SP1 and its nanoformulation with in vivo evaluation of anticancer and antimetastatic activity as potential drug for breast adenocarcinoma. The synthesized compound SP1 exhibited potent growth inhibitory efficacy against four types of human cancer (breast, prostate, colon and lung) cell lines with IC50 = 2.4, 3.4, 7.24 and 7.81 µM and selectivity index 5.79, 4.08, 1.93 and 1.78 respectively. Flow cytometric analysis illustrated that SP1 exhibited high apoptotic effect on all tested cancer cell lines (38.22-52.3 %). The mode of action of this promising compound was declared by its ability to upregulate the gene expression of p21 (2.29-3.91 folds) with suppressing cyclin D (1.9-8.93 folds) and NF-κB (1.26-1.44 fold) in the treated cancer cells. Also, it enhanced the protein expression of apoptotic marker p53 and moderate binding affinity for MDM2 (KD;7.94 µM). Notwithstanding these promising impressive findings, its selectivity against cancer cell lines and safety on normal cells were improved by nanoformulation. Therefore, SP1 was formulated as ultra-flexible niosomal nanovesicles (transethoniosomes). The ultra-deformability is attributable to the synergism between ethanol and edge activators in improving the flexibility of the nanovesicular membrane. F8 exhibited high deformability index (DI) of (23.48 ± 1.4). It was found that % SP1 released from the optimized transethoniosomal formula (F8) after 12 h (Q12h) was 84.17 ± 1.29 % and its entrapment efficiency (%EE) was 76.48 ± 1.44 %. Based upon the very encouraging and promising in vitro results, an in vivo study was carried out in female Balb/c mice weighing (15-25 g). SP1 did halt the proliferation of breast cancer cells as well as suppressed the metastasis in other organs like liver, lung and heart.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias de la Mama , Ratones , Animales , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , FN-kappa B , Bencimidazoles/farmacología , Línea Celular , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
15.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500376

RESUMEN

By binding to the spliceosomal protein Snu66, the human ubiquitin-like protein Hub1 is a modulator of the spliceosome performance and facilitates alternative splicing. Small molecules that bind to Hub1 would be of interest to study the protein-protein interaction of Hub1/Snu66, which is linked to several human pathologies, such as hypercholesterolemia, premature aging, neurodegenerative diseases, and cancer. To identify small molecule ligands for Hub1, we used the interface analysis, peptide modeling of the Hub1/Snu66 interaction and the fragment-based NMR screening. Fragment-based NMR screening has not proven sufficient to unambiguously search for fragments that bind to the Hub1 protein. This was because the Snu66 binding pocket of Hub1 is occupied by pH-sensitive residues, making it difficult to distinguish between pH-induced NMR shifts and actual binding events. The NMR analyses were therefore verified experimentally by microscale thermophoresis and by NMR pH titration experiments. Our study found two small peptides that showed binding to Hub1. These peptides are the first small-molecule ligands reported to interact with the Hub1 protein.


Asunto(s)
Empalme Alternativo , Empalmosomas , Humanos , Empalmosomas/metabolismo , Ubiquitinas/genética , Espectroscopía de Resonancia Magnética , Computadores , Unión Proteica , Ligandos , Sitios de Unión
16.
Molecules ; 27(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684392

RESUMEN

New biphenyl-based chimeric compounds containing pomalidomide were developed and evaluated for their activity to inhibit and degrade the programmed cell death-1/programmed cell death- ligand 1 (PD-1/PD-L1) complex. Most of the compounds displayed excellent inhibitory activity against PD-1/PD-L1, as assessed by the homogenous time-resolved fluorescence (HTRF) binding assay. Among them, compound 3 is one of the best with an IC50 value of 60 nM. Using an ex vivo PD-1/PD-L1 blockade cell line bioassay that expresses human PD-1 and PD-L1, we show that compounds 4 and 5 significantly restore the repressed immunity in this co-culture model. Western blot data, however, demonstrated that these anti-PD-L1/pomalidomide chimeras could not reduce the protein levels of PD-L1.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Talidomida , Antígeno B7-H1/antagonistas & inhibidores , Compuestos de Bifenilo , Humanos , Ligandos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Talidomida/análogos & derivados , Talidomida/farmacología
17.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889270

RESUMEN

The synthesis of 3,4-dihydroquinoxalin-2-ones via the selective reduction of aromatic, multifunctional nitro precursors catalyzed by supported gold nanoparticles is reported. The reaction proceeds through the in situ formation of the corresponding amines under heterogeneous transfer hydrogenation of the initial nitro compounds catalyzed by the commercially available Au/TiO2-Et3SiH catalytic system, followed by an intramolecular C-N transamidation upon treatment with silica acting as a mild acid. Under the present conditions, the Au/TiO2-TMDS system was also found to catalyze efficiently the present selective reduction process. Both transfer hydrogenation processes showed very good functional-group tolerance and were successfully applied to access more structurally demanding products bearing other reducible moieties such as chloro, aldehyde or methyl ketone. An easily scalable (up to 1 mmol), low catalyst loading (0.6 mol%) synthetic protocol was realized, providing access to this important scaffold. Under these mild catalytic conditions, the desired products were isolated in good to high yields and with a TON of 130. A library analysis was also performed to demonstrate the usefulness of our synthetic strategy and the physicochemical profile of the derivatives.


Asunto(s)
Oro , Nanopartículas del Metal , Aminas/química , Catálisis , Oro/química , Hidrogenación
18.
Mol Pharm ; 18(9): 3378-3386, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351158

RESUMEN

Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that are widely used to prevent cardiovascular diseases. However, a series of pleiotropic mechanisms have been associated with statins, particularly with atorvastatin. Therefore, the assessment of [18F]atorvastatin kinetics with positron emission tomography (PET) may elucidate the mechanism of action of statins and the impact of sexual dimorphism, which is one of the most debated interindividual variations influencing the therapeutic efficacy. [18F]Atorvastatin was synthesized via a previously optimized 18F-deoxyfluorination strategy, used for preclinical PET studies in female and male Wistar rats (n = 7 for both groups), and for subsequent ex vivo biodistribution assessment. PET data were fitted to several pharmacokinetic models, which allowed for estimating relevant kinetic parameters. Both PET imaging and biodistribution studies showed negligible uptake of [18F]atorvastatin in all tissues compared with the primary target organ (liver), excretory pathways (kidneys and small intestine), and stomach. Uptake of [18F]atorvastatin was 38 ± 3% higher in the female liver than in the male liver. The irreversible 2-tissue compartment model showed the best fit to describe [18F]atorvastatin kinetics in the liver. A strong correlation (R2 > 0.93) between quantitative Ki (the radiotracer's unidirectional net rate of influx between compartments) and semi-quantitative liver's SUV (standard uptake value), measured between 40 to 90 min, showed potential to use the latter parameter, which circumvents the need for blood sampling as a surrogate of Ki for monitoring [18F]atorvastatin uptake. Preclinical assays showed faster uptake and clearance for female rats compared to males, seemingly related to a higher efficiency for exchanges between the arterial input and the hepatic tissue. Due to the slow [18F]atorvastatin kinetics, equilibrium between the liver and plasma concentration was not reached during the time frame studied, making it difficult to obtain sufficient and accurate kinetic information to quantitatively characterize the radiotracer pharmacokinetics over time. Nevertheless, the reported results suggest that the SUV can potentially be used as a simplified measure, provided all scans are performed at the same time point. Preclinical PET-studies with [18F]atorvastatin showed faster uptake and clearance in female compared to male rats, apparently related to higher efficiency for exchange between arterial blood and hepatic tissue.


Asunto(s)
Atorvastatina/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/análisis , Animales , Atorvastatina/administración & dosificación , Atorvastatina/análisis , Atorvastatina/química , Femenino , Radioisótopos de Flúor/administración & dosificación , Radioisótopos de Flúor/análisis , Eliminación Hepatobiliar , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/análisis , Masculino , Imagen Molecular/métodos , Radiofármacos/administración & dosificación , Ratas , Ratas Wistar , Factores Sexuales , Distribución Tisular
19.
J Org Chem ; 86(14): 9771-9780, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34184894

RESUMEN

Highly substituted isoquinolone-4-carboxylic acid is an important bioactive scaffold; however, it is challenging to access it in a general and short way. A Cu-catalyzed cascade reaction was successfully designed involving the Ugi postcyclization strategy by using ammonia and 2-halobenzoic acids as crucial building blocks. Privileged polysubstituted isoquinolin-1(2H)-ones were constructed in a combinatorial format with generally moderate to good yields. The protocol, with a ligand-free catalytic system, shows a broad substrate scope and good functional group tolerance toward excellent molecular diversity. Free 4-carboxy-isoquinolone is now for the first time generally accessible by a convergent multicomponent reaction protocol.


Asunto(s)
Ácidos Carboxílicos , Cobre , Amoníaco , Catálisis , Estructura Molecular
20.
Chem Rev ; 119(3): 1970-2042, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30707567

RESUMEN

Tetrazole derivatives are a prime class of heterocycles, very important to medicinal chemistry and drug design due to not only their bioisosterism to carboxylic acid and amide moieties but also to their metabolic stability and other beneficial physicochemical properties. Although more than 20 FDA-approved drugs contain 1 H- or 2 H-tetrazole substituents, their exact binding mode, structural biology, 3D conformations, and in general their chemical behavior is not fully understood. Importantly, multicomponent reaction (MCR) chemistry offers convergent access to multiple tetrazole scaffolds providing the three important elements of novelty, diversity, and complexity, yet MCR pathways to tetrazoles are far from completely explored. Here, we review the use of multicomponent reactions for the preparation of substituted tetrazole derivatives. We highlight specific applications and general trends holding therein and discuss synthetic approaches and their value by analyzing scope and limitations, and also enlighten their receptor binding mode. Finally, we estimated the prospects of further research in this field.


Asunto(s)
Tetrazoles/química , Tetrazoles/farmacología , Animales , Química Farmacéutica , Descubrimiento de Drogas , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA