Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619085

RESUMEN

Anthropogenic climate change profoundly alters the ocean's environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts.


Asunto(s)
Ecosistema , Océanos y Mares , Cambio Climático , Planeta Tierra
2.
Ambio ; 33(4-5): 242-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15264603

RESUMEN

The physical state of the Baltic Sea in possible future climates is approached by numerical model experiments with a regional coupled ocean-atmosphere model driven by different global simulations. Scenarios and recent climate simulations are compared to estimate changes. The sea surface is clearly warmer by 2.9 degrees C in the ensemble mean. The horizontal pattern of average annual mean warming can largely be explained in terms of ice-cover reduction. The transfer of heat from the atmosphere to the Baltic Sea shows a changed seasonal cycle: a reduced heat loss in fall, increased heat uptake in spring, and reduced heat uptake in summer. The interannual variability of surface temperature is generally increased. This is associated with a smoothed frequency distribution in northern basins. The overall heat budget shows increased solar radiation to the sea surface, which is balanced by changes of the other heat flux components.


Asunto(s)
Clima , Simulación por Computador , Modelos Teóricos , Temperatura , Países Bálticos , Monitoreo del Ambiente , Predicción , Efecto Invernadero , Océanos y Mares
3.
Ambio ; 33(4-5): 249-56, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15264604

RESUMEN

Sea-ice in the Baltic Sea in present and future climates is investigated. The Rossby Centre Regional Atmosphere-Ocean model was used to perform a set of 30-year-long time slice experiments. For each of the two driving global models HadAM3H and ECHAM4/OPYC3, one control run (1961-1990) and two scenario runs (2071-2100) based upon the SRES A2 and B2 emission scenarios were conducted. The future sea-ice volume in the Baltic Sea is reduced by 83% on average. The Bothnian Sea, large areas of the Gulf of Finland and Gulf of Riga, and the outer parts of the southwestern archipelago of Finland will become ice-free in the mean. The presented scenarios are used to study the impact of climate change on the Baltic ringed seal (Phoca hispida botnica). Climate change seems to be a major threat to all southern populations. The only fairly good winter sea-ice habitat is found to be confined to the Bay of Bothnia.


Asunto(s)
Clima , Simulación por Computador , Hielo , Modelos Teóricos , Agua de Mar , Países Bálticos , Monitoreo del Ambiente , Predicción , Océanos y Mares , Estaciones del Año
4.
Ambio ; 33(4-5): 261-6, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15264606

RESUMEN

A study of the water-mass circulation of the Baltic has been undertaken by making use of a three dimensional Baltic Sea model simulation. The saline water from the North Atlantic is traced through the Danish Sounds into the Baltic where it upwells and mixes with the fresh water inflow from the rivers forming a Baltic haline conveyor belt. The mixing of the saline water from the Great Belt and Oresund with the fresh water is investigated making use of overturning stream functions and Lagrangian trajectories. The overturning stream function was calculated as a function of four different vertical coordinates (depth, salinity, temperature and density) in order to understand the path of the water and where it upwells and mixes. Evidence of a fictive depth overturning cell similar to the Deacon Cell in the Southern Ocean was found in the Baltic proper corresponding to the gyre circulation around Gotland, which vanishes when the overturning stream function is projected on density layers. A Lagrangian trajectory study was performed to obtain a better view of the circulation and mixing of the saline and fresh waters. The residence time of the water masses in the Baltic is calculated to be 26-29 years and the Lagrangian dispersion reaches basin saturation after 5 years.


Asunto(s)
Clima , Simulación por Computador , Modelos Teóricos , Movimientos del Agua , Países Bálticos , Predicción , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA