Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39397207

RESUMEN

PURPOSE: The association of targeted therapy with chemotherapy is encouraged to increase the treatment efficiency, especially in hypoxic triple-negative breast cancer. The APE1 redox activity has stood out as a potential tumor target. However, the effect of the association of the APE1 redox inhibitors with doxorubicin in hypoxia still needs to be evidenced. Therefore, our objective was to investigate the effect of the APX2009 (APE1 inhibitor) on the sensitization of breast cancer cells to doxorubicin in normoxia and hypoxia. METHODS: The WST-1 assay was used to evaluate cell viability after APX2009 and doxorubicin application under normoxia and hypoxia conditions in the MCF-7 and MDA-MB-231 cells. Apoptosis was analyzed by annexin assay and detection of caspases-3/7 activity by luminescence-based assay. The clinical association between APE1 inhibition signature and doxorubicin sensitivity was evaluated by bioinformatics analyses. RESULTS: MDA-MB-231 and MCF-7 cell lines were more sensitive to APX2009 in normoxia than in hypoxia. Co-treatment with APX2009 and doxorubicin in hypoxia further decreased the viability of triple-negative MDA-MB-231 cells than treatment alone, which was accompanied by doxorubicin intracellular accumulation, and increase of apoptotic cells percentage, and caspases-3/7 activity. Moderate association was found between APE1 inhibition signature and doxorubicin sensitivity in the hypoxic basal subtype. CONCLUSION: The findings suggest that APX2009 sensitizes the MDA-MB-231 cells to doxorubicin in hypoxia by doxorubicin intracellular accumulation and caspases-3/7-mediated apoptosis.

2.
Mol Biol Rep ; 51(1): 47, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165468

RESUMEN

APE1/REF-1 (apurinic/apyrimidinic endonuclease 1 / redox factor-1) is a protein with two domains, with endonuclease function and redox activity. Its main activity described is acting in DNA repair by base excision repair (BER) pathway, which restores DNA damage caused by oxidation, alkylation, and single-strand breaks. In contrast, the APE1 redox domain is responsible for regulating transcription factors, such as AP-1 (activating protein-1), NF-κB (Nuclear Factor kappa B), HIF-1α (Hypoxia-inducible factor 1-alpha), and STAT3 (Signal Transducers and Activators of Transcription 3). These factors are involved in physiological cellular processes, such as cell growth, inflammation, and angiogenesis, as well as in cancer. In human malignant tumors, APE1 overexpression is associated with lung, colon, ovaries, prostate, and breast cancer progression, more aggressive tumor phenotypes, and worse prognosis. In this review, we explore APE1 and its domain's role in cancer development processes, highlighting the role of APE1 in the hallmarks of cancer. We reviewed original articles and reviews from Pubmed related to APE1 and cancer and found that both domains of APE1/REF-1, but mainly its redox activity, are essential to cancer cells. This protein is often overexpressed in cancer, and its expression and activity are correlated to processes such as proliferation, invasion, inflammation, angiogenesis, and resistance to cell death. Therefore, APE1 participates in essential processes of cancer development. Then, the activity of APE1/REF-1 in these hallmarks suggests that targeting this protein could be a good therapeutic approach.


Asunto(s)
Neoplasias , Humanos , Masculino , Neoplasias/genética , Ciclo Celular , Muerte Celular , Endonucleasas , Inflamación
3.
Cell Biochem Biophys ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033092

RESUMEN

Unbalanced redox status and constitutive STAT3 activation are related to several aspects of tumor biology and poor prognosis, including metastasis and drug resistance. The triple-negative breast cancer (TNBC) is listed as the most aggressive and exhibits the worst prognosis among the breast cancer subtypes. Although the mechanism of reactive oxygen species (ROS) generation led to STAT3 activation is described, there is no data concerning the STAT3 influence on redox homeostasis in TNBC. To address the role of STAT3 signaling in redox balance, we inhibited STAT3 in TNBC cells and investigated its impact on total ROS levels, contents of hydroperoxides, nitric oxide (NO), and total glutathione (GSH), as well as the expression levels of 3-nitrotyrosine (3NT), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa B (NF-κB)/p65. Our results indicate that ROS levels depend on the STAT3 activation, while the hydroperoxide level remained unchanged, and NO and 3NT expression increased. Furthermore, GSH levels, Nrf2, and NF-κB/p65 protein levels are decreased in the STAT3-inhibited cells. Accordingly, TNBC patients' data from TCGA demonstrated that both STAT3 mRNA levels and STAT3 signature are correlated to NF-κB/p65 and Nrf2 signatures. Our findings implicate STAT3 in controlling redox balance and regulating redox-related genes' expression in triple-negative breast cancer.

4.
Cancer Drug Resist ; 6(2): 273-283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457136

RESUMEN

Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.

5.
Arch Med Res ; 54(2): 79-85, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609033

RESUMEN

BACKGROUND: In breast cancer (BC), hypoxia is associated with poor prognosis. Protein Salvador homolog 1 (SAV1) acts as a tumor suppressor and is downregulated in the cancer cells. However, there is limited data on the expression profile of SAV1 and its importance in BC. It has not been studied to evaluate this phenomenon in a hypoxic microenvironment yet. AIM: This study aimed to investigate SAV1 expression profiles under normoxia and hypoxia, and the potential of SAV1 in BC prognosis. METHODS: Gene and protein expression analyses were performed using Real-Time quantitative PCR (RT-qPCR) and immunocytochemistry (ICC), respectively, and in silico analyses were performed using The Cancer Genome Atlas (TCGA). The survival curves were constructed using KMplotter. RESULTS: SAV1 expression was lower in BC samples and tumor cell lines than in normal samples. The SAV1 mRNA levels were reduced in hypoxic estrogen receptor positive (ER+) tumors, which were associated with a lower survival probability as compared to normoxic ER+ tumors. Furthermore, lower levels of SAV1 were found in advanced cancer stage samples, which are associated with worse survival curves and can be a risk factor for BC. CONCLUSIONS: These data suggest a potential prognostic role of SAV1 in BC, with lower expressions associated with worse prognosis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Pronóstico , Hipoxia , Estadificación de Neoplasias , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Proteínas de Ciclo Celular/metabolismo
6.
Curr Top Med Chem ; 22(20): 1654-1673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927918

RESUMEN

Breast cancer represents a health concern worldwide for being the leading cause of cancer- related women's death. The main challenge for breast cancer treatment involves its heterogeneous nature with distinct clinical outcomes. It is clinically categorized into five subtypes: luminal A; luminal B, HER2-positive, luminal-HER, and triple-negative. Despite the significant advances in the past decades, critical issues involving the development of efficient target-specific therapies and overcoming treatment resistance still need to be better addressed. OMICs-based strategies have marked a revolution in cancer biology comprehension in the past two decades. It is a consensus that Next-Generation Sequencing (NGS) is the primary source of this revolution and the development of relevant consortia translating pharmacogenomics into clinical practice. Still, new approaches, such as CRISPR editing and epigenomic sequencing are essential for target and biomarker discoveries. Here, we discuss genomics and epigenomics techniques, how they have been applied in clinical management and to improve therapeutic strategies in breast cancer, as well as the pharmacogenomics translation into the current and upcoming clinical routine.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Farmacogenética , Receptor ErbB-2
7.
J Cancer Res Clin Oncol ; 147(5): 1287-1297, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33580421

RESUMEN

PURPOSE: In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS: We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS: SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION: SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Dominios WW/genética , Animales , Carcinogénesis/genética , Proliferación Celular/genética , Humanos , MicroARNs/genética , Transducción de Señal/genética
8.
Cells ; 8(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939818

RESUMEN

Hypoxia is an inherent condition of tumors and contributes to cancer development and progression. Hypoxia-inducible factors (HIFs) are the major transcription factors involved in response to low O2 levels, orchestrating the expression of hundreds of genes involved in cancer hallmarks' acquisition and modulation of epigenetic mechanisms. Epigenetics refers to inheritable mechanisms responsible for regulating gene expression, including genes involved in the hypoxia response, without altering the sequence of DNA bases. The main epigenetic mechanisms are DNA methylation, non-coding RNAs, and histone modifications. These mechanisms are highly influenced by cell microenvironment, such as O2 levels. The balance and interaction between these pathways is essential for homeostasis and is directly linked to cellular metabolism. Some of the major players in the regulation of HIFs, such as prolyl hydroxylases, DNA methylation regulators, and histone modifiers require oxygen as a substrate, or have metabolic intermediates as cofactors, whose levels are altered during hypoxia. Furthermore, during pathological hypoxia, HIFs' targets as well as alterations in epigenetic patterns impact several pathways linked to tumorigenesis, such as proliferation and apoptosis, among other hallmarks. Therefore, this review aims to elucidate the intricate relationship between hypoxia and epigenetic mechanisms, and its crucial impact on the acquisition of cancer hallmarks.


Asunto(s)
Epigénesis Genética , Hipoxia Tumoral/genética , Metilación de ADN/genética , Inestabilidad Genómica , Histonas/metabolismo , Humanos , Microambiente Tumoral/genética
9.
J Forensic Sci ; 63(2): 536-540, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28834547

RESUMEN

Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics.


Asunto(s)
Regiones Determinantes de Complementariedad/genética , ADN Mitocondrial/genética , Reacción en Cadena de la Polimerasa/métodos , Temperatura , Genética Forense/métodos , Humanos , Análisis de Secuencia de ADN
10.
Anticancer Res ; 36(11): 5681-5691, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27793889

RESUMEN

Breast cancer is a public health problem both in developing and developed countries. The breast cancer stem cell (BCSC) hypothesis has grown in the cancer research community. These BCSCs comprise of a small subpopulation of cells within the tumor mass which exhibit stem cell-like characteristics and have emerged as being responsible for tumor development, recurrence and metastasis in BC. The complexity of control of gene expression in BCSC is commonly driven by a myriad of signaling pathways triggered by extracellular signals, mutations and epigenetic control. Thus, some signaling pathways have been highlighted in BC, especially those linked to stem cell phenotype, such as nuclear factor-kappa B, signal transducer and activator of transcription 3, wingless-type MMTV integration site family (Wnt)/ß-catenin, Hedgehog and NOTCH. Moreover, these BCSCs can also be influenced by the tumor microenvironment, for instance, hypoxic areas. Given the importance of signaling pathways and tumor microenvironment for breast cancer, this review focuses on the relationship between cellular signaling and BCSCs and its therapeutic implications.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Epigénesis Genética , Femenino , Humanos , Mutación , Células Madre Neoplásicas/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA