Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Development ; 148(3)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462110

RESUMEN

Rab11 family-interacting protein 5 (Rab11fip5) is an adaptor protein that binds to the small GTPase Rab11, which has an important function in endosome recycling and trafficking of cellular proteins to the plasma membrane. Rab11fip5 is involved in many cellular processes, such as cytoskeleton rearrangement, iron uptake and exocytosis in neuroendocrine cells, and is also known as a candidate gene for autism-spectrum disorder. However, the role of Rab11fip5 during early embryonic development is not clearly understood. In this study, we identified Rab11fip5 as a protein that interacts with ephrinB1, a transmembrane ligand for Eph receptors. The PDZ binding motif in ephrinB1 and the Rab-binding domain in Rab11fip5 are necessary for their interaction in a complex. EphrinB1 and Rab11fip5 display overlapping expression in the telencephalon of developing amphibian embryos. The loss of Rab11fip5 function causes a reduction in telencephalon size and a decrease in the expression level of ephrinB1. Moreover, morpholino oligonucleotide-mediated knockdown of Rab11fip5 decreases cell proliferation in the telencephalon. The overexpression of ephrinB1 rescues these defects, suggesting that ephrinB1 recycling by the Rab11/Rab11fip5 complex is crucial for proper telencephalon development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Efrina-B1/metabolismo , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Citoesqueleto , Endosomas/metabolismo , Efrina-B1/genética , Exocitosis , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Neurogénesis , Telencéfalo/citología , Xenopus laevis
2.
EMBO Rep ; 23(4): e52775, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35201641

RESUMEN

Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT-B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT-B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT-B complex components cooperate in multiciliogenesis.


Asunto(s)
Cuerpos Basales , Infertilidad Masculina , Proteínas de la Membrana , Proteínas de Unión al ARN , Animales , Cuerpos Basales/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Xenopus laevis
3.
Genes Dev ; 27(5): 491-503, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23475958

RESUMEN

The formation of tissue boundaries is dependent on the cell-cell adhesion/repulsion system that is required for normal morphogenetic processes during development. The Smad ubiquitin regulatory factors (Smurfs) are E3 ubiquitin ligases with established roles in cell growth and differentiation, but whose roles in regulating cell adhesion and migration are just beginning to emerge. Here, we demonstrate that the Smurfs regulate tissue separation at mesoderm/ectoderm boundaries through antagonistic interactions with ephrinB1, an Eph receptor ligand that has a key role in regulating the separation of embryonic germ layers. EphrinB1 is targeted by Smurf2 for degradation; however, a Smurf1 interaction with ephrinB1 prevents the association with Smurf2 and precludes ephrinB1 from ubiquitination and degradation, since it is a substantially weaker substrate for Smurf1. Inhibition of Smurf1 expression in embryonic mesoderm results in loss of ephrinB1-mediated separation of this tissue from the ectoderm, which can be rescued by the coincident inhibition of Smurf2 expression. This system of differential interactions between Smurfs and ephrinB1 regulates the maintenance of tissue boundaries through the control of ephrinB protein levels.


Asunto(s)
Efrina-B1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Xenopus/genética , Xenopus/metabolismo , Animales , Embrión no Mamífero/enzimología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Unión al GTP Monoméricas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/metabolismo
4.
Genesis ; 55(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095646

RESUMEN

Cell-cell and cell-substrate adhesion are essential to the proper formation and maintenance of tissue patterns during development, and deregulation of these processes can lead to invasion and metastasis of cancer cells. Cell surface adhesion and signaling molecules are key players in both normal development and cancer progression. One set of cell surface proteins, the Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, are significant regulators of these processes. During embryonic development, the Eph/ephrin signaling system is involved in cell-cell contact events that result in cell sorting and boundary formation between receptor and ligand bearing cells. When migrating cells that display the membrane bound ligands or receptors come in contact with cells bearing the cognate partner, the response may be adhesion or repulsion, ultimately leading to the proper positioning of these cells. During cancer progression, the signaling between these receptor/ligand pairs is often deregulated, leading to increased invasion and metastasis. To gain mechanistic insight into the pathways that mediate Eph receptor and ephrin signaling we have relied upon a very tractable system, the frog Xenopus. This model system has proven to be extremely versatile, and represents a relatively quick and manipulable system to explore signaling events and the in vivo processes affected by these signals.


Asunto(s)
Adhesión Celular/genética , Desarrollo Embrionario/genética , Efrinas/genética , Receptores de la Familia Eph/genética , Animales , Efrinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Animales , Receptores de la Familia Eph/biosíntesis , Transducción de Señal/genética , Xenopus/genética , Xenopus/crecimiento & desarrollo
5.
Genesis ; 54(6): 334-49, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27092474

RESUMEN

The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn, and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activities are required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased the expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologs of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. genesis 54:334-349, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular/genética , Ectodermo/crecimiento & desarrollo , Factores de Transcripción Forkhead/genética , Placa Neural/crecimiento & desarrollo , Animales , Blastómeros/metabolismo , Blástula/crecimiento & desarrollo , Ectodermo/metabolismo , Factores de Transcripción Forkhead/biosíntesis , Gástrula/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Placa Neural/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Cigoto/crecimiento & desarrollo
6.
J Biol Chem ; 289(26): 18556-68, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825906

RESUMEN

The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration.


Asunto(s)
Movimiento Celular , Efrina-B1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Línea Celular , Línea Celular Tumoral , Activación Enzimática , Efrina-B1/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Fosforilación , Unión Proteica , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
7.
Semin Cell Dev Biol ; 23(1): 65-74, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22040914

RESUMEN

Great strides have been made regarding our understanding of the processes and signaling events influenced by Eph/ephrin signaling that play a role in cell adhesion and cell movement. However, the precise mechanisms by which these signaling events regulate cell and tissue architecture still need further resolution. The Eph/ephrin signaling pathways and the ability to regulate cell-cell adhesion and motility constitutes an impressive system for regulating tissue separation and morphogenesis (Pasquale, 2005, 2008 [1,2]). Moreover, the de-regulation of this signaling system is linked to the promotion of aggressive and metastatic tumors in humans [2]. In the following section, we discuss some of the interesting mechanisms by which ephrins can signal through their own intracellular domains (reverse signaling) either independent of forward signaling or in addition to forward signaling through a cognate receptor. In this review we discuss how ephrins (Eph ligands) "reverse signal" through their intracellular domains to affect cell adhesion and movement, but the focus is on modes of action that are independent of SH2 and PDZ interactions.


Asunto(s)
Efrinas/fisiología , Transducción de Señal , Animales , Adhesión Celular , Movimiento Celular , Efrinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Dominios PDZ , Receptores de la Familia Eph/metabolismo , Dominios Homologos src
8.
J Biol Chem ; 288(20): 14135-14146, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23558677

RESUMEN

Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Xenopus/fisiología , Xenopus/embriología , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Linaje de la Célula , Movimiento Celular , Sistemas de Lectura Abierta , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Retina/embriología , Transducción de Señal , Células Madre/citología , Xenopus/genética , Proteínas de Xenopus/química , Dominios Homologos src
9.
Dev Biol ; 365(2): 363-75, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22425621

RESUMEN

FoxD4/5, a forkhead transcription factor, plays a critical role in establishing and maintaining the embryonic neural ectoderm. It both up-regulates genes that maintain a proliferative, immature neural ectoderm and down-regulates genes that promote the transition to a differentiating neural plate. We constructed deletion and mutant versions of FoxD4/5 to determine which domains are functionally responsible for these opposite activities, which regulate the critical developmental transition of neural precursors to neural progenitors to differentiating neural plate cells. Our results show that up-regulation of genes that maintain immature neural precursors (gem, zic2) requires the Acidic blob (AB) region in the N-terminal portion of the protein, indicating that the AB is the transactivating domain. Additionally, down-regulation of those genes that promote the transition to neural progenitors (sox) and those that lead to neural differentiation (zic, irx) involves: 1) an interaction with the Groucho co-repressor at the Eh-1 motif in the C-terminus; and 2) sequence downstream of this motif. Finally, the ability of FoxD4/5 to induce the ectopic expression of neural precursor genes in the ventral ectoderm also involves both the AB region and the Eh-1 motif; FoxD4/5 accomplishes ectopic neural induction by both activating neural precursor genes and repressing BMP signaling and epidermal genes. This study identifies the specific, conserved domains of the FoxD4/5 protein that allow this single transcription factor to regulate a network of genes that controls the transition of a proliferative neural ectodermal population to a committed neural plate population poised to begin differentiation.


Asunto(s)
Ectodermo/embriología , Factores de Transcripción Forkhead/química , Regulación del Desarrollo de la Expresión Génica , Placa Neural/embriología , Activación Transcripcional , Proteínas de Xenopus/química , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Ectodermo/citología , Ectodermo/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Placa Neural/citología , Placa Neural/metabolismo , Estructura Terciaria de Proteína , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
10.
Nat Cell Biol ; 8(1): 55-63, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16362052

RESUMEN

An important step in retinal development is the positioning of progenitors within the eye field where they receive the local environmental signals that will direct their ultimate fate. Recent evidence indicates that ephrinB1 functions in retinal progenitor movement, but the signalling pathway is unclear. We present evidence that ephrinB1 signals through its intracellular domain to control retinal progenitor movement into the eye field by interacting with Xenopus Dishevelled (Xdsh), and by using the planar cell polarity (PCP) pathway. Blocking Xdsh translation prevents retinal progeny from entering the eye field, similarly to the morpholino-mediated loss of ephrinB1 (ref. 2). Overexpression of Xdsh can rescue the phenotype induced by loss of ephrinB1, and this rescue (as well as a physical association between Xdsh and ephrinB1) is completely dependent on the DEP (Dishevelled, Egl-10, Pleckstrin) domain of Xdsh. Similar gain- and loss-of-function experiments suggest that Xdsh associates with ephrinB1 and mediates ephrinB1 signalling through downstream members of the PCP pathway during eye field formation.


Asunto(s)
Movimiento Celular , Efrina-B1/metabolismo , Fosfoproteínas/metabolismo , Retina/embriología , Xenopus laevis/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Polaridad Celular , Proteínas Dishevelled , Retina/citología , Retina/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas de Xenopus , Xenopus laevis/metabolismo
11.
Nat Commun ; 14(1): 337, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670115

RESUMEN

Apical constriction is a cell shape change critical to vertebrate neural tube closure, and the contractile force required for this process is generated by actin-myosin networks. The signaling cue that instructs this process has remained elusive. Here, we identify Wnt4 and the transmembrane ephrinB2 protein as playing an instructive role in neural tube closure as members of a signaling complex we termed WERDS (Wnt4, EphrinB2, Ror2, Dishevelled (Dsh2), and Shroom3). Disruption of function or interaction among members of the WERDS complex results in defects of apical constriction and neural tube closure. The mechanism of action involves an interaction of ephrinB2 with the Dsh2 scaffold protein that enhances the formation of the WERDS complex, which in turn, activates Rho-associated kinase to induce apical constriction. Moreover, the ephrinB2/Dsh2 interaction promotes non-canonical Wnt signaling and shows how cross-talk between two major signal transduction pathways, Eph/ephrin and Wnt, coordinate morphogenesis of the neural tube.


Asunto(s)
Efrina-B2 , Transducción de Señal , Efrina-B2/genética , Constricción , Transducción de Señal/fisiología , Morfogénesis/fisiología , Tubo Neural
12.
Nanotoxicology ; 17(1): 94-115, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36919473

RESUMEN

Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-Xenopus (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.


Asunto(s)
Nanopartículas del Metal , Teratogénesis , Animales , Oro/toxicidad , Polietileneimina/toxicidad , Polietilenglicoles/toxicidad , Xenopus laevis , Nanopartículas del Metal/toxicidad , Embrión no Mamífero , Teratógenos/toxicidad , Mamíferos
13.
Cell Rep ; 38(5): 110312, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108539

RESUMEN

The Zic family of zinc finger transcription factors plays a critical role in multiple developmental processes. Using loss-of-function studies, we find that Zic5 is important for the differentiation of retinal pigmented epithelium (RPE) and the rod photoreceptor layer through suppressing Hedgehog (Hh) signaling. Further, Zic5 interacts with the critical Hh signaling molecule, Gli3, through the zinc finger domains of both proteins. This Zic5-Gli3 interaction disrupts Gli3/Gli3 homodimerization, resulting in Gli3 protein stabilization via a reduction in Gli3 ubiquitination. During embryonic Hh signaling, the activator form of Gli is normally converted to a repressor form through proteosome-mediated processing of Gli3, and the ratio of Gli3 repressor to full-length (activator) form of Gli3 determines the Gli3 repressor output required for normal eye development. Our results suggest Zic5 is a critical player in regulating Gli3 stability for the proper differentiation of RPE and rod photoreceptor layer during Xenopus eye development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/crecimiento & desarrollo , Proteínas de Xenopus/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Xenopus
14.
J Cell Biol ; 221(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34787650

RESUMEN

Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Organogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/química , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Humanos , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , Proteínas Proto-Oncogénicas/metabolismo , Especificidad por Sustrato , Xenopus , Proteínas de Xenopus/química , Quinasa Tipo Polo 1
15.
Biomedicines ; 9(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34572357

RESUMEN

Renal hypouricemia is a rare genetic disorder. Hypouricemia can present as renal stones or exercise-induced acute renal failure, but most cases are asymptomatic. Our previous study showed that two recessive variants of SLC22A12 (p.Trp258*, pArg90His) were identified in 90% of the hypouricemia patients from two independent cohorts: the Korean genome and epidemiology study (KoGES) and the Korean Cancer Prevention Study (KCPS-II). In this work, we investigate the genetic causes of hypouricemia in the rest of the 10% of unsolved cases. We found a novel non-synonymous mutation of SLC2A9 (voltage-sensitive uric acid transporter) in the whole-exome sequencing (WES) results. Molecular dynamics prediction suggests that the novel mutation p.Met126Val in SLCA9b (p.Met155Val in SLC2A9a) hinders uric acid transport through a defect of the outward open geometry. Molecular analysis using Xenopus oocytes confirmed that the p.Met126Val mutation significantly reduced uric acid transport but does not affect the SLC2A9 protein expression level. Our results will shed light on a better understanding of SLC2A9-mediated uric acid transport and the development of a uric acid-lowering agent.

16.
Sci Rep ; 10(1): 13752, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792568

RESUMEN

Sproutys are negative regulators of the Ras/Raf/MAPK signaling pathway and involved in regulation of organogenesis, differentiation, cell migration and proliferation. Although the function of Sproutys have been extensively studied during embryonic development, their role and mode of action during eye formation in vertebrate embryonic development is still unknown. Here we show that Xenopus sprouty2 is expressed in the optic vesicle at late neurula stage and knockdown of Sprouty2 prevents retinal progenitors from populating the retina, which in turn gives rise to small eyes. In the absence of Sprouty2, progenitor cell population of the retina can be restored by blocking the MAPK signaling pathway through overexpression of DN-Ras or DN-Raf. In contrast, activation of the MAPK pathway through overexpression of a constitutively active form of c-Raf (ca-Raf) inhibits progenitor population of the retina, similar to the Sprouty2 loss-of-function phenotype. Moreover, we present evidence that the retinal defect observed in Sprouty2 morphants is attributed to the failure of proper movement of retinal progenitors into the optic vesicle, rather than an effect on progenitor cell survival. These results suggest that Sprouty2 is required for the positioning of retinal progenitors within the optic vesicle through suppressing Ras/Raf/MAPK signaling pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas/fisiología , Retina/embriología , Células Madre/citología , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Animales , Diferenciación Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neurulación/fisiología , Proteínas Proto-Oncogénicas c-raf/metabolismo , Retina/citología , Proteínas de Xenopus/metabolismo
17.
Dev Cell ; 6(1): 55-67, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14723847

RESUMEN

The definitive retinal progenitors of the eye field are specified by transcription factors that both promote a retinal fate and control cell movements that are critical for eye field formation. However, the molecular signaling pathways that regulate these movements are largely undefined. We demonstrate that both the FGF and ephrin pathways impact eye field formation. Activating the FGF pathway before gastrulation represses cellular movements in the presumptive anterior neural plate and prevents cells from expressing a retinal fate, independent of mesoderm induction or anterior-posterior patterning. Inhibiting the FGF pathway promotes cell dispersal and significantly increases eye field contribution. ephrinB1 reverse signaling is required to promote cellular movements into the eye field, and can rescue the FGF receptor-induced repression of retinal fate. These results indicate that FGF modulation of ephrin signaling regulates the positioning of retinal progenitor cells within the definitive eye field.


Asunto(s)
Movimiento Celular/fisiología , Embrión no Mamífero/embriología , Efrina-B1/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Retina/embriología , Xenopus laevis/embriología , Animales , Tipificación del Cuerpo/fisiología , Linaje de la Célula/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Gástrula/citología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Reguladores/fisiología , Morfogénesis/fisiología , Fenotipo , Retina/citología , Retina/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/metabolismo , Xenopus laevis/metabolismo
18.
Mol Biol Cell ; 17(9): 3717-28, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16775003

RESUMEN

We have shown previously that either Grb2- or Shc-mediated signaling from the oncogenic Met receptor Tpr-Met is sufficient to trigger cell cycle progression in Xenopus oocytes. However, direct binding of these adaptors to Tpr-Met is dispensable, implying that another Met binding partner mediates these responses. In this study, we show that overexpression of Grb2-associated binder 1 (Gab1) promotes cell cycle progression when Tpr-Met is expressed at suboptimal levels. This response requires that Gab1 possess an intact Met-binding motif, the pleckstrin homology domain, and the binding sites for phosphatidylinositol 3-kinase and tyrosine phosphatase SHP-2, but not the Grb2 and CrkII/phospholipase Cgamma binding sites. Importantly, we establish that Gab1-mediated signals are critical for cell cycle transition promoted by the oncogenic Met and fibroblast growth factor receptors, but not by progesterone, the natural inducer of cell cycle transition in Xenopus oocytes. Moreover, Gab1 is essential for Tpr-Met-mediated morphological transformation and proliferation of fibroblasts. This study provides the first evidence that Gab1 is a key binding partner of the Met receptor for induction of cell cycle progression, proliferation, and oncogenic morphological transformation. This study identifies Gab1 and its associated signaling partners as potential therapeutic targets to impair proliferation or transformation of cancer cells in human malignancies harboring a deregulated Met receptor.


Asunto(s)
Ciclo Celular , Transformación Celular Neoplásica , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proliferación Celular , Células Cultivadas , Secuencia Conservada , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Proteína Oncogénica tpr-met/farmacología , Oocitos/citología , Oocitos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/química , Progesterona/farmacología , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
19.
J Cell Biol ; 218(8): 2659-2676, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31270137

RESUMEN

Cilia are critical for proper embryonic development and maintaining homeostasis. Although extensively studied, there are still significant gaps regarding the proteins involved in regulating ciliogenesis. Using the Xenopus laevis embryo, we show that Dishevelled (Dvl), a key Wnt signaling scaffold that is critical to proper ciliogenesis, interacts with Drg1 (developmentally regulated GTP-binding protein 1). The loss of Drg1 or disruption of the interaction with Dvl reduces the length and number of cilia and displays defects in basal body migration and docking to the apical surface of multiciliated cells (MCCs). Moreover, Drg1 morphants display abnormal rotational polarity of basal bodies and a decrease in apical actin and RhoA activity that can be attributed to disruption of the protein complex between Dvl and Daam1, as well as between Daam1 and RhoA. These results support the concept that the Drg1-Dvl interaction regulates apical actin polymerization and stability in MCCs. Thus, Drg1 is a newly identified partner of Dvl in regulating ciliogenesis.


Asunto(s)
Cilios/metabolismo , Proteínas Dishevelled/metabolismo , Proteínas de Unión al GTP/metabolismo , Organogénesis , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cuerpos Basales/metabolismo , Línea Celular , Polaridad Celular , Proteínas Dishevelled/química , Embrión no Mamífero/metabolismo , Proteínas de Unión al GTP/química , Humanos , Fenotipo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas de Xenopus/química , Xenopus laevis/embriología
20.
Nat Commun ; 9(1): 3491, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154457

RESUMEN

Although Eph-ephrin signalling has been implicated in the migration of cranial neural crest (CNC) cells, it is still unclear how ephrinB transduces signals regulating this event. We provide evidence that TBC1d24, a putative Rab35-GTPase activating protein (Rab35 GAP), complexes with ephrinB2 via the scaffold Dishevelled (Dsh) and mediates a signal affecting contact inhibition of locomotion (CIL) in CNC cells. Moreover, we found that, in migrating CNC, the interaction between ephrinB2 and TBC1d24 negatively regulates E-cadherin recycling in these cells via Rab35. Upon engagement of the cognate Eph receptor, ephrinB2 is tyrosine phosphorylated, which disrupts the ephrinB2/Dsh/TBC1d24 complex. The dissolution of this complex leads to increasing E-cadherin levels at the plasma membrane, resulting in loss of CIL and disrupted CNC migration. Our results indicate that TBC1d24 is a critical player in ephrinB2 control of CNC cell migration via CIL.


Asunto(s)
Proteínas Portadoras/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Efrina-B2/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Animales , Western Blotting , Proteínas Portadoras/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Efrina-B2/genética , Proteínas Activadoras de GTPasa , Inmunoprecipitación , Locomoción/genética , Locomoción/fisiología , Proteínas de la Membrana , Microscopía Fluorescente , Proteínas del Tejido Nervioso , Fosforilación , Unión Proteica , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA