Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(4): 1355-1362, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36745385

RESUMEN

Optical metasurfaces offer unprecedented flexibility in light wave manipulation but suffer weak resonant enhancement. Tackling this problem, we experimentally unveil a new phase gradient metasurface platform made entirely from individually addressable high quality factor (high-Q) silicon meta-atoms. Composed of pairs of nearly identical nanoblocks, these meta-atoms support dipolar-guided-mode resonances that, due to the controlled suppression of radiation loss, serve as highly sensitive phase pixels when placed above a mirror. A key novelty of this platform lies in the vanishingly small structural perturbations needed to produce universal phase fronts. Having fabricated elements with Q-factor ∼380 and spaced by λ/1.2, we achieve strong beam steering, up to 59% efficient, to angles 32.3°, 25.3°, and 20.9°, with variations in nanoantenna volume fractions across the metasurfaces of ≤2.6%, instead of >50% required by traditional versions. Aside from extreme sensitivity, the metasurfaces exhibit near-field intensity enhancement over 1000×. Taken together, these properties represent an exciting prospect for dynamic and nonlinear wave shaping.

2.
Nano Lett ; 22(4): 1703-1709, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35112873

RESUMEN

Dynamically reconfigurable metasurfaces promise compact and lightweight spatial light modulation for many applications, including LiDAR, AR/VR, and LiFi systems. Here, we design and computationally investigate high-quality-factor silicon-on-lithium niobate metasurfaces with electrically driven, independent control of its constituent nanobars for full phase tunability with high tuning efficiency. Free-space light couples to guided modes within each nanobar via periodic perturbations, generating quality factors exceeding 30,000 while maintaining a bar spacing of <λ/1.5. We achieve nearly 2π phase variation with an applied bias not exceeding ±25 V, maintaining a reflection efficiency above 91%. Using full-field simulations, we demonstrate a high-angle (51°) switchable beamsplitter with a diffracted efficiency of 93% and an angle-tunable beamsteerer, spanning 18-31°, with up to 86% efficiency, all using the same metasurface device. Our platform provides a foundation for highly efficient wavefront-shaping devices with a wide dynamic tuning range capable of generating nearly any transfer function.


Asunto(s)
Electricidad , Silicio , Niobio , Óxidos
3.
Nat Nanotechnol ; 19(9): 1290-1298, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38961248

RESUMEN

Metasurfaces precisely control the amplitude, polarization and phase of light, with applications spanning imaging, sensing, modulation and computing. Three crucial performance metrics of metasurfaces and their constituent resonators are the quality factor (Q factor), mode volume (Vm) and ability to control far-field radiation. Often, resonators face a trade-off between these parameters: a reduction in Vm leads to an equivalent reduction in Q, albeit with more control over radiation. Here we demonstrate that this perceived compromise is not inevitable: high quality factor, subwavelength Vm and controlled dipole-like radiation can be achieved simultaneously. We design high quality factor, very-large-scale-integrated silicon nanoantenna pixels (VINPix) that combine guided mode resonance waveguides with photonic crystal cavities. With optimized nanoantennas, we achieve Q factors exceeding 1,500 with Vm less than 0.1 ( λ / n air ) 3 . Each nanoantenna is individually addressable by free-space light and exhibits dipole-like scattering to the far-field. Resonator densities exceeding a million nanoantennas per cm2 can be achieved. As a proof-of-concept application, we show spectrometer-free, spatially localized, refractive-index sensing, and fabrication of an 8 mm × 8 mm VINPix array. Our platform provides a foundation for compact, densely multiplexed devices such as spatial light modulators, computational spectrometers and in situ environmental sensors.

4.
Nat Commun ; 14(1): 4486, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495593

RESUMEN

Genetic analysis methods are foundational to advancing personalized medicine, accelerating disease diagnostics, and monitoring the health of organisms and ecosystems. Current nucleic acid technologies such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) rely on sample amplification and can suffer from inhibition. Here, we introduce a label-free genetic screening platform based on high quality (high-Q) factor silicon nanoantennas functionalized with nucleic acid fragments. Each high-Q nanoantenna exhibits average resonant quality factors of 2,200 in physiological buffer. We quantitatively detect two gene fragments, SARS-CoV-2 envelope (E) and open reading frame 1b (ORF1b), with high-specificity via DNA hybridization. We also demonstrate femtomolar sensitivity in buffer and nanomolar sensitivity in spiked nasopharyngeal eluates within 5 minutes. Nanoantennas are patterned at densities of 160,000 devices per cm2, enabling future work on highly-multiplexed detection. Combined with advances in complex sample processing, our work provides a foundation for rapid, compact, and amplification-free molecular assays.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Ecosistema , Pruebas Genéticas , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
5.
ArXiv ; 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34671699

RESUMEN

Genetic analysis methods are foundational to advancing personalized and preventative medicine, accelerating disease diagnostics, and monitoring the health of organisms and ecosystems. Current nucleic acid technologies such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and DNA microarrays rely on fluorescence and absorbance, necessitating sample amplification or replication and leading to increased processing time and cost. Here, we introduce a label-free genetic screening platform based on high quality (high-Q) factor silicon nanoantennas functionalized with monolayers of nucleic acid fragments. Each nanoantenna exhibits substantial electromagnetic field enhancements with sufficiently localized fields to ensure isolation from neighboring resonators, enabling dense biosensor integration. We quantitatively detect complementary target sequences using DNA hybridization simultaneously for arrays of sensing elements patterned at densities of 160,000 pixels per cm$^2$. In physiological buffer, our nanoantennas exhibit average resonant quality factors of 2,200, allowing detection of two gene fragments, SARS-CoV-2 envelope (E) and open reading frame 1b (ORF1b), down to femtomolar concentrations. We also demonstrate high specificity sensing in clinical nasopharyngeal eluates within 5 minutes of sample introduction. Combined with advances in biomarker isolation from complex samples (e.g., mucus, blood, wastewater), our work provides a foundation for rapid, compact, amplification-free and high throughput multiplexed genetic screening assays spanning medical diagnostics to environmental monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA