Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(31): 10637-10658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35687361

RESUMEN

Flavonoids are important active ingredients in plant-based food, which have many beneficial effects on health. But the low solubility, poor oral bioavailability, and inferior stability of many flavonoids may limit their applications in the food, cosmetics, and pharmaceutical industries. Structural modification can overcome these shortcomings to improve and extend the application of flavonoids. The study of how to modify flavonoids and the influence of various modifications on biological activity have drawn great interest in the current literature. In this review, the working principles and operating conditions of modification methods were summarized along with their potential and limitations in terms of operational safety, cost, and productivity. The influence of various modifications on biological activities and the structure-activity relationships of flavonoids derivatives were discussed and highlighted, which may give guidance for the synthesis of highly effective active agents. In addition, the safety of flavonoids derivatives is reviewed, and future research directions of flavonoid modification research are discussed.


Asunto(s)
Flavonoides , Alimentos , Flavonoides/farmacología , Flavonoides/química , Relación Estructura-Actividad , Disponibilidad Biológica , Solubilidad
2.
Crit Rev Food Sci Nutr ; 63(32): 11385-11398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35730204

RESUMEN

Carotenoids, polyphenols, and minerals (CPMs) are representative bioactive compounds and micronutrients in plant-based foods, showing many potentially positive bioactivities. Bioaccessibility is a prerequisite for bioactivities of CPMs. Cell wall polysaccharides (CWPs) are major structural components of plant cell wall, and they have been proven to affect the bioaccessibility of CPMs in different ways. This review summarizes recent literatures about the effects of CWPs on the bioaccessibility of CPMs and discusses the potential mechanisms. Based on the current findings, CWPs can inhibit the bioaccessibility of CPMs in gastrointestinal tract. The effects of CWPs on the bioaccessibility of polyphenols and minerals mainly attributes to bind between them, while CWPs affect the bioaccessibility of carotenoids by changing the digestive environment. Further, this review overviews the factors (environmental conditions, CWPs properties and CPMs characteristics) affecting the interactions between CWPs and CWPs. This review may help to better design healthy and nutritious foods precisely.


Asunto(s)
Carotenoides , Polifenoles , Carotenoides/análisis , Polifenoles/análisis , Minerales/metabolismo , Polisacáridos/análisis , Pared Celular/química
3.
J Sci Food Agric ; 101(11): 4760-4767, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33502770

RESUMEN

BACKGROUND: Proanthocyanidins (PAS) were complexed with potato starch (PS) to prepare polyphenol-starch complexes. The pasting, rheological and retrogradation properties of the complexes were investigated. RESULTS: The addition of PAS markedly affected the pasting, rheological and retrogradation properties of PS, especially at a concentration of 5% (w/w). Rapid viscosity analysis indicated that PAS significantly changed the viscosity, breakdown and setback value of PS. The rheological results showed that PAS decreased the flow behavior index and consistency coefficient, but increased the viscoelasticity of PS. Differential scanning calorimetry and X-ray diffraction indicated that PAS delayed the retrogradation of PS. Furthermore, scanning electron microscopy indicated that the morphologies of retrograded PS gels were greatly altered to a less compact structure with the presence of PAS. Moreover, Fourier transform infrared spectroscopy elucidated that PAS interacted with PS via a noncovalent interaction, and inhibited the retrogradation of PS. CONCLUSIONS: The findings suggested that supplementing PS with PAS might be an effective and convenient method for modifying the physicochemical properties of PS. © 2021 Society of Chemical Industry.


Asunto(s)
Extractos Vegetales/química , Proantocianidinas/química , Solanum tuberosum/química , Almidón/química , Rastreo Diferencial de Calorimetría , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad , Difracción de Rayos X
4.
J Food Sci Technol ; 57(3): 886-894, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32123409

RESUMEN

It is an interesting topic to elucidate the interaction among plant proteins and bioactive lipid components. However, there is a shortage of understanding regarding the nature of the interaction between rice protein and conjugated linoleic acid (CLA). In this study, the intrinsic fluorescence intensity of rice glutelin (RG) was quenched upon increasing concentrations of CLA, indicating the occurrence of an interaction between them. Thermodynamic analysis showed that the RG-CLA binding process occurred spontaneously and hydrogen bonds were the primary driving force. Moreover, only one binding site was calculated between RG and CLA by the intrinsic fluorescence data. The surface hydrophobicity of RG was reduced with increasing CLA. Circular dichroism and synchronous fluorescence spectroscopy showed conformational and microenvironmental changes around the chromophores of RG. The α-helical content increased and ß-sheet content declined after the binding reaction. The computational docking program displayed the target site in which CLA and amino acid residues of RG might be linked together. This study provides valuable insights into the nature of the interactions between plant proteins and fatty acids.

5.
Int J Biol Macromol ; 258(Pt 1): 128340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000575

RESUMEN

Interactions between plant polyphenols and food allergens may be a new way to alleviate food allergies. The non-covalent interactions between the major allergen from peanut (Ara h 2) with procyanidin dimer (PA2) were therefore characterized using spectroscopic, thermodynamic, and molecular simulation analyses. The main interaction between the Ara h 2 and PA2 was hydrogen bonding. PA2 statically quenched the intrinsic fluorescence intensity and altered the conformation of the Ara h 2, leading to a more disordered polypeptide structure with a lower surface hydrophobicity. In addition, the in vitro allergenicity of the Ara h 2-PA2 complex was investigated using enzyme-linked immunosorbent assay (ELISA) kits. The immunoglobulin E (IgE) binding capacity of Ara h 2, as well as the release of allergenic cytokines, decreased after interacting with PA2. When the ratio of Ara h 2-to-PA2 was 1:50, the IgE binding capacity was reduced by around 43 %. This study provides valuable insights into the non-covalent interactions between Ara h 2 and PA2, as well as the potential mechanism of action of the anti-allergic reaction caused by binding of the polyphenols to the allergens.


Asunto(s)
Hipersensibilidad al Cacahuete , Proantocianidinas , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proantocianidinas/metabolismo , Glicoproteínas/química , Inmunoglobulina E/metabolismo , Polifenoles/metabolismo , Proteínas de Plantas/química
6.
Foods ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998657

RESUMEN

Brown rice noodles are increasingly favored by consumers for their health benefits; however, their development is hindered by their poor edible qualities. The effect of germination on the cooking, textural, organoleptic and nutritional qualities of brown rice pasta was investigated. In comparison to ungerminated brown rice noodles, germination resulted in a shorter cooking time, reduced cooking losses, and decreased hardness and adhesion of noodles as well as reduced bitter taste. These changes can be attributed to germination altering the basic composition of brown rice. Meanwhile, the contents of γ-aminobutyric acid, free phenolic acid, and bound phenolic acid increased by 53.43%, 21.71%, and 7.14%, respectively, while the content of resistant starch de-creased by 21.55%. Sprouting is a promising strategy for improving the edible quality and nutritional properties of brown rice noodles.

7.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932054

RESUMEN

Polysaccharides (AOPs) were extracted from Alpiniae oxyphyllae fructus using three distinct methods: hot water (AOP-HW), hydrochloric acid (AOP-AC), and NaOH/NaBH4 (AOP-AL). This study systematically investigated and compared the physicochemical properties, structural characteristics, antioxidant activities, and α-amylase inhibitory activities of the extracted polysaccharides. Among the three AOPs, AOP-AC exhibited the highest yield (13.76%) and neutral sugar content (80.57%), but had the lowest molecular weight (121.28 kDa). Conversely, AOP-HW had the lowest yield (4.54%) but the highest molecular weight (385.42 kDa). AOP-AL was predominantly composed of arabinose (28.42 mol%), galacturonic acid (17.61 mol%), and galactose (17.09 mol%), while glucose was the major sugar in both AOP-HW (52.31 mol%) and AOP-AC (94.77 mol%). Functionally, AOP-AL demonstrated superior scavenging activities against DPPH, hydroxyl, and ABTS radicals, whereas AOP-AC exhibited the strongest inhibitory effect on α-amylase. These findings indicate that the extraction solvent significantly influences the physicochemical and biological properties of AOPs, thus guiding the selection of appropriate extraction methods for specific applications. The results of this study have broad implications for industries seeking natural polysaccharides with antioxidant and enzymatic inhibitory properties.

8.
Sci Total Environ ; 924: 171730, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492603

RESUMEN

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Asunto(s)
Ecosistema , Lagos , Calcio , Suelo , Eutrofización , Floraciones de Algas Nocivas , Agua , Clorofila , Clorofila A , Hierro , Hierro de la Dieta , Fósforo , Nitrógeno/análisis
9.
Int J Biol Macromol ; 260(Pt 1): 129253, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218297

RESUMEN

Phycocyanin is a natural pigment protein with antioxidant, anti-tumor, and anti-inflammatory properties, but its relatively poor emulsibility limits its use in the food industry. In order to improve the emulsifying capacity of phycocyanin, a novel phycocyanin-chitosan complex was prepared, and the characteristics, digestibility, and stability of emulsion containing oil droplets stabilized by the complex were investigated. The results showed that the phycocyanin-chitosan complex had better stability and lower interfacial tension at pH 6.5 than phycocyanin, and it significantly improved the stability of emulsion and inhibited the aggregation of oil droplets. The phycocyanin-chitosan complex stabilized emulsion showed better physical stability, digestibility, and oxidation stability than the phycocyanin emulsion. The particle size of the phycocyanin-chitosan complex stabilized emulsion was very small (from 0.1 to 2 µm), and its absolute value of zeta potential was high. Overall, this study suggests that the phycocyanin-chitosan complex effectively improved the emulsifying capacity of phycocyanin.


Asunto(s)
Quitosano , Emulsiones/química , Quitosano/química , Ficocianina , Oxidación-Reducción , Tamaño de la Partícula
10.
Food Chem ; 449: 139110, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581781

RESUMEN

This study explored the effect of stirred media mill (SMM) processing on the acid-induced gelling properties of pea protein. Results showed that SMM treatment enhanced the gel strength from 75.06 g to 183.89 g and increased the water holding capacity from 46.64 % to 73.50 %. The minimum gelation concentration achieved for SMM-treated pea protein was 4 %, significantly lower than that of heat-pretreated pea protein (9 %). SMM decreased protein aggregate size from 104 µm to 180 nm. Microscopy analysis revealed that the small aggregates facilitated the formation of uniform gel networks with tight connections. Linear rheology indicated that small protein aggregates resulted in slower gelation rates with a higher G' for the formed gels. The SMM-pretreated protein gel showed strain hardening, shear thinning behaviors, and satisfactory stability to withstand large-amplitude oscillatory shear. Overall, SMM emerges as a promising technology for producing protein gel products with strong mechanical attributes and customizable rheological properties.


Asunto(s)
Geles , Proteínas de Guisantes , Pisum sativum , Reología , Geles/química , Proteínas de Guisantes/química , Pisum sativum/química , Manipulación de Alimentos , Concentración de Iones de Hidrógeno
11.
Front Nutr ; 11: 1327164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379541

RESUMEN

Amomum villosum Lour. (A. villosum), known as Sharen in China, is widely used for culinary and medicinal purposes due to containing a diverse set of bioactive compounds. In this study, the optimum ethanol extraction process was optimized and the composition and biological activities (antioxidant and antitumor) of five different fractions (dichloromethane, petroleum ether, ethyl acetate, n-butanol and H2O) extracted from the ethanol extract of A. villosum were investigated. The results showed that the optimal extraction conditions were extraction temperature 80°C, extraction time 120 min, ethanol concentration 40% and solid-liquid ratio 1:25 g/mL. Moreover, 35 bioactive compounds were successfully identified by UPLC-ESI-QTOF-MS/MS from five factions for the first time, including 12 phenolic acids and derivatives, 2 organic acids, 12 flavonoids and derivatives, 2 oxylipins and 7 proanthocyanidins. Among them, ethyl acetate fraction (Fr-EtOAc) exhibited the highest content of total phenolic (374.01 mg GAE/g DW) and flavonoid (93.11 mg RE/g DW), where vanillic acid, catechin, epicatechin and protocatechuic acid were the predominant phenolic compounds that accounting for 81.65% of the quantified bioactive compounds. In addition, Fr-EtOAc demonstrated excellent total antioxidant activity (IC50 of DPPH and ABTS assays were 0.23, 0.08 mg/mL, respectively, and FRAP assay was 322.91 mg VCE/100 g DW) and antitumor activity (1,000 µg/mL, 79.04% inhibition rate). The results could provide guidance for the industrial production and application of A. villosum.

12.
Food Funct ; 14(3): 1357-1368, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648058

RESUMEN

The interaction of flavonoid glycosides with milk protein and effects on the functional properties of flavonoid glycoside-ß-lactoglobulin complexes are still inexplicit. The noncovalent interactions between flavonoid glycosides including quercetin (QE), quercitrin (QI), and rutin (RU) with ß-lactoglobulin (ß-LG) were determined by computer molecular docking and multispectral technique analysis. The fluorescence quenching results indicated that the flavonoid glycosides formed stable complexes with ß-LG by the static quenching mechanism. The computer molecular docking and thermodynamic parameters analysis conclude that the main interaction of ß-LG-QE was via hydrogen bonding, while for ß-LG-QI and ß-LG-RU it is via hydrophobic forces. The order of binding affinity to ß-LG was QE (37.76 × 104 L mol-1) > RU (16.80 × 104 L mol-1) > QI (11.17 × 104 L mol-1), which indicated that glycosylation adversely affected the colloidal complex binding capacity. In this study, the physicochemical properties of the protein-flavonoid colloidal complex were determined. The analysis by circular dichroism spectroscopy demonstrated that flavonoid glycosides made the protein structure looser by inducing the secondary structure of ß-LG to transform from the α-helix and ß-sheet to random coils. The hydrophobicity of ß-LG decreased due to binding with flavonoid glycosides, while functional properties including foaming, emulsification, and antioxidant capacities of ß-LG were improved due to the noncovalent interactions. This study presents a part of the insight and guidance on the interactive mechanism of flavonoid glycosides and proteins and is helpful for developing functional protein-based foods.


Asunto(s)
Flavonoides , Glicósidos , Flavonoides/química , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Dicroismo Circular , Lactoglobulinas/química , Unión Proteica
13.
Food Res Int ; 164: 112341, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738017

RESUMEN

Betanin (BN) is a kind of edible natural red pigment with a variety of biological activities, but the thermal instability of BN has critically restricted its application in food industry. In this study, complex plant protein (RP-PP) was constructed by rice protein (RP) and pea protein (PP) to study the thermal protection effect and protective mechanism on BN. Thermal degradation results indicated RP-PP significantly improved thermal protection effect, and the degradation rate of BN was decreased from 93.74 % to 56.48 % after heating at 80 ℃ for 60 min. The main interaction between RP-PP and BN was hydrophobic force based on the result of fluorescence spectroscopy, FTIR and molecular docking. In addition, a porous network structure of RP-PP was observed by SEM, and the pore structure gradually decreased at the presence of BN, which speculated BN was trapped in it. TEM observation showed that RP-PP gradually aggregated with the increasing BN concentration, leading to a significant increase in particle size and the formation of network structure. The BN acted as a bridge to the surrounding proteins in the aggregated complex and was encapsulated within it. The interaction and encapsulation may be the key reasons for the improved thermal stability of BN.


Asunto(s)
Oryza , Proteínas de Guisantes , Betacianinas/química , Proteínas de Plantas/química , Simulación del Acoplamiento Molecular
14.
J Food Sci ; 88(9): 3879-3892, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37458306

RESUMEN

A novel whole peanut butter (PB) was developed using an emerging technology called stirred media mill (SMM). The impact of SMM on the size, microstructure, rheology, nutrient, and flavor of PB was investigated. The SMM treatment significantly decreased the particle size of PB, damaged cell structure, and released the oil body from cells. The apparent viscosity of PB decreased with the grinding process. Visual inspection revealed that the colloidal stability of PB was improved. The fatty acid composition was not affected by the grinding process. However, the tocopherol contents of the extracted oil slightly increased. Electronic nose and GC-MS analysis indicated that SMM could alter the flavor of PB after grinding for 45 min. Overall, SMM was a potential process technology to manufacture stable nut butter with smooth texture and delightful flavor profile.


Asunto(s)
Arachis , Ácidos Grasos , Arachis/química , Nutrientes , Reología
15.
Int J Biol Macromol ; 226: 51-60, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36464195

RESUMEN

The structural changes of macromolecules (starch, dietary fiber and protein) in purple corn flour (PCF) modified by a low temperature impact mill (LTIM) at different air classifier speed (ACS) were investigated. LTIM changed the multi-scale structure of starch, which was characterized by increased starch damage, stronger destruction of relative crystallinity (from 37.85 % to 15.53 %) and short-range ordered structure (R1047/1022, from 1.21 to 0.73) with the increased ACS. The structure of dietary fiber was also destroyed on multi-level, including decreased particle size, destructive morphology, and slightly changed crystalline structure. Additionally, LTIM showed high damage on the senior structure (surface hydrophobicity, disulfide bond, secondary structure) of protein. Due to the structure changes modified by LTIM, starch, dietary fiber and protein played different role on hydration property of PCF. Starch had positive effect, while dietary fiber and protein had negative effect. Our experimental results may provide valuable information for further analysis of other quality changes (oil holding capacity, cation exchange capacity, ability to produce high-quality dough or end-out products, etc.) of purple corn flour after LTIM treatment.


Asunto(s)
Harina , Almidón , Almidón/química , Temperatura , Harina/análisis , Frío , Fibras de la Dieta/análisis
16.
Bioresour Technol ; 387: 129649, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37558104

RESUMEN

To facilitate biomolecules extraction and bioaccessibility of Chlorella pyrenoidosa, a novel industry-scale microfluidization (ISM) was used to disrupt cells effectively. Microscope images showed ISM damaged cell integrity, disorganized cell wall structure, pulverized cell membrane and promoted the release of intracellular components. The decrease of particle size and the increase of ζ-potential also confirmed the cell disruption. The cell breakage ratio of sample treated at 120 MPa was 98%. Compared with untreated samples, total soluble solid content and protein extraction rate of the sample treated at 120 MPa increased by 2 °Brix and 12%. Protein was degraded by ISM, the release of intracellular protein and the reduction of molecular weight increased protein digestibility by 20% in in vitro gastric phase. Lipid yield and chlorophyll b content were also increased by ISM. These results provided a new solution to cell disruption of microalgae and expanded the application field of ISM.


Asunto(s)
Chlorella , Microalgas , Chlorella/metabolismo , Proteínas/metabolismo , Pared Celular/metabolismo , Microalgas/metabolismo , Membrana Celular
17.
Food Res Int ; 168: 112772, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120222

RESUMEN

Macadamia oil is rich in monounsaturated fatty acids, especially a high level of palmitoleic acid, which may have beneficial health effects by lowering blood lipid levels. In our study, the hypolipidemic effects of macadamia oil and its potential mechanisms of action were investigated using a combination of in vitro and in vivo assays. The results showed that macadamia oil significantly reduced lipid accumulation, and improved triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in oleic acid-induced high-fat HepG2 cells. The macadamia oil treatment also exhibited antioxidant effects, as seen by its ability to reduce reactive oxygen species and malondialdehyde (MDA) levels, and increase superoxide dismutase (SOD) activity. The effects of 1000 µg/mL of macadamia oil were comparable to that of 4.19 µg/mL simvastatin. The results of qRT-PCR and western blotting analyses indicated that macadamia oil effectively inhibited hyperlipidemia by reducing the expression levels of SREBP-1c, PPAR-γ, ACC and FAS and by enhancing the expression levels of HO-1, NRF2 and γ-GCS, via AMPK activation and oxidative stress relief, respectively. In addition, different doses of macadamia oil were found to significantly improve liver lipid accumulation, reduce serum and liver TC, TG, and LDL-C levels, increase HDL-C levels, increase antioxidant enzyme (SOD, GSH-Px, and T-AOC) activity, and decrease the MDA content of mice on a high-fat diet. These results indicated that macadamia oil had a hypolipidemic effect and provide insights that might facilitate the development of functional food and dietary supplements.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Macadamia , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , LDL-Colesterol , Lípidos , Triglicéridos , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo
18.
Food Res Int ; 167: 112635, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087230

RESUMEN

Additive technology (3D printing) is increasingly being used to produce plant-based meat analogs. However, there are several challenges to fabricating meat analogs using this technology: (i) the protein content in the final printed product is often too low to match the nutritional profile of real meat; (ii) it is often difficult to accurately mimic the textural and structural attributes of real meat using existing plant protein edible inks. In this study, the rheological properties and printing performance of edible inks produced from soy protein isolate (SPI), wheat gluten (WG), and rice protein (RP) were investigated. Our goal was to mix SPI, WG, RP powders to develop a high-protein edible ink (25% of total dry matter content) that can be used to create 3D-printed meat analogs. The rheological properties, moisture distribution, texture, microstructure, and printing performance (fidelity and stability) of protein pastes with different SPI-WG-to-RP ratios were measured. These protein-enriched inks exhibited pseudoplastic behavior with viscoelastic properties. The apparent viscosity and storage modulus of these pastes decreased with increasing rice protein proportion, which improved their 3D printing performance, such as hardness, support force, and plasticization. These edible inks prepared by mixed protein may be useful for 3D printing of plant-based foods.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Soja , Glútenes , Impresión Tridimensional
19.
Int J Biol Macromol ; 253(Pt 1): 126617, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652319

RESUMEN

This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.


Asunto(s)
Proantocianidinas , Almidón , Almidón/química , Amilopectina/química , Amilosa/química , Zea mays/química , Polifenoles
20.
Food Res Int ; 172: 113098, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689870

RESUMEN

In this study, macadamia oil-based oleogels were prepared using monoglyceride stearate (MG) as a gelator with a low critical gelation concentration (3.0 wt%). The physical properties of the oleogels were evaluated by polarized light microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, texture and rheological analysis. And the lipid digestion and oxidative stability of the macadamia oil were determined by pH titration and accelerated oxidation test, respectively. The results showed that the hardness, oil binding capacity, and thermal stability of the oleogels increased with increasing MG concentration, which was attributed to the formation of a network of MG crystals held together by van der Waals interactions and hydrogen bonds. Rheological analysis indicated that all the oleogels exhibited a thermally reversible solid-to-liquid transition and viscoelastic behavior at ambient temperatures. Moreover, the formation of oleogels increased fatty acid release during in vitro lipid digestion and improved the oxidative stability of the macadamia oil. In addition, the potential application of these oleogels as replacements for saturated fats in foods was demonstrated by creating a chocolate product where the cocoa butter was replaced with macadamia oil-based oleogels with a high degree of unsaturation. These results can provide guidance for the preparation of macadamia oil-based oleogels, which may increase their application in foods.


Asunto(s)
Lipólisis , Macadamia , Ácidos Grasos , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA