Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186530

RESUMEN

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Asunto(s)
Corteza Cerebral/citología , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Transcriptoma/genética , Animales , Femenino , Perfilación de la Expresión Génica , Hipocampo/fisiología , Canales Iónicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo
2.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007418

RESUMEN

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Asunto(s)
Encéfalo/metabolismo , Técnicas de Inactivación de Genes/métodos , Genes Reporteros , Animales , Encéfalo/citología , Calcio/metabolismo , Línea Celular , Hibridación Fluorescente in Situ , Luz , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Optogenética , ARN no Traducido/genética , Transgenes/genética
3.
Nature ; 598(7879): 174-181, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616072

RESUMEN

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Asunto(s)
Encéfalo/citología , Forma de la Célula , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Atlas como Asunto , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/embriología , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Neurogénesis , Neuroglía/citología , Neuronas/citología , RNA-Seq , Reproducibilidad de los Resultados
4.
Nature ; 598(7879): 111-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616062

RESUMEN

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Asunto(s)
Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Animales , Atlas como Asunto , Callithrix/genética , Epigénesis Genética , Epigenómica , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Persona de Mediana Edad , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Filogenia , Especificidad de la Especie , Transcriptoma
5.
Nature ; 563(7729): 72-78, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30382198

RESUMEN

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Asunto(s)
Perfilación de la Expresión Génica , Neocórtex/citología , Neocórtex/metabolismo , Animales , Biomarcadores/análisis , Femenino , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Masculino , Ratones , Corteza Motora/anatomía & histología , Corteza Motora/citología , Corteza Motora/metabolismo , Neocórtex/anatomía & histología , Especificidad de Órganos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Corteza Visual/anatomía & histología , Corteza Visual/citología , Corteza Visual/metabolismo
6.
Nat Methods ; 17(4): 422-429, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203389

RESUMEN

Brain circuits comprise vast numbers of interconnected neurons with diverse molecular, anatomical and physiological properties. To allow targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.


Asunto(s)
Genómica/métodos , Optogenética , Recombinasas/metabolismo , Animales , Encéfalo/citología , Regulación de la Expresión Génica , Ingeniería Genética , Ratones , Neuronas/metabolismo , Recombinasas/genética , Pez Cebra
7.
Mol Psychiatry ; 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36437312

RESUMEN

Exposure to trauma is a risk factor for the development of a number of mood disorders, and may enhance vulnerability to future adverse life events. Recent data demonstrate that ventral tegmental area (VTA) neurons expressing the vesicular glutamate transporter 2 (VGluT2) signal and causally contribute to behaviors that involve aversive or threatening stimuli. However, it is unknown whether VTA VGluT2 neurons regulate transsituational outcomes of stress and whether these neurons are sensitive to stressor controllability. This work adapted an operant mouse paradigm to examine the impact of stressor controllability on VTA VGluT2 neuron function as well as the role of VTA VGluT2 neurons in mediating transsituational stressor outcomes. Uncontrollable (inescapable) stress, but not physically identical controllable (escapable) stress, produced social avoidance and exaggerated fear in male mice. Uncontrollable stress in females led to exploratory avoidance of a novel brightly lit environment. Both controllable and uncontrollable stressors increased VTA VGluT2 neuronal activity, and chemogenetic silencing of VTA VGluT2 neurons prevented the behavioral sequelae of uncontrollable stress in male and female mice. Further, we show that stress activates multiple genetically-distinct subtypes of VTA VGluT2 neurons, especially those that are VGluT2+VGaT+, as well as lateral habenula neurons receiving synaptic input from VTA VGluT2 neurons. Our results provide causal evidence that mice can be used for identifying stressor controllability circuitry and that VTA VGluT2 neurons contribute to transsituational stressor outcomes, such as social avoidance, exaggerated fear, or anxiety-like behavior that are observed within trauma-related disorders.

9.
J Neurosci ; 39(18): 3484-3497, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833505

RESUMEN

To better examine circuit mechanisms underlying perception and behavior, researchers need tools to enable temporally precise control of action-potential generation of individual cells from neuronal ensembles. Here we demonstrate that such precision can be achieved with two-photon (2P) temporally focused computer-generated holography to control neuronal excitability at the supragranular layers of anesthetized and awake visual cortex in both male and female mice. Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing any of the three opsins ReaChR, CoChR, or ChrimsonR, we investigated the dependence of spiking activity on the opsin's channel kinetics. We found that in all cases the use of brief illumination (≤10 ms) induces spikes of millisecond temporal resolution and submillisecond precision, which were preserved upon repetitive illuminations up to tens of hertz. To reach high temporal precision, we used a large illumination spot covering the entire cell body and an amplified laser at high peak power and low excitation intensity (on average ≤0.2 mW/µm2), thus minimizing the risk for nonlinear photodamage effects. Finally, by combining 2P holographic excitation with electrophysiological recordings and calcium imaging using GCaMP6s, we investigated the factors, including illumination shape and intensity, opsin distribution in the target cell, and cell morphology, which affect the spatial selectivity of single-cell and multicell holographic activation. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should make it easier to investigate neuronal connections and find further links between connectivity, microcircuit dynamics, and brain functions.SIGNIFICANCE STATEMENT Recent developments in the field of optogenetics has enabled researchers to probe the neuronal microcircuit with light by optically actuating genetically encoded light-sensitive opsins expressed in the target cells. Here, we applied holographic light shaping and temporal focusing to simultaneously deliver axially confined holographic patterns to opsin-positive cells in the living mouse cortex. Parallel illumination efficiently induced action potentials with high temporal resolution and precision for three opsins of different kinetics. We extended the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitored their calcium dynamics. These results demonstrate fast and temporally precise in vivo control of a neuronal subpopulation, opening new opportunities for revealing circuit mechanisms underlying brain functions.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Optogenética/métodos , Corteza Visual/fisiología , Animales , Femenino , Luz , Masculino , Ratones Transgénicos , Optogenética/instrumentación , Factores de Tiempo
10.
Proc Natl Acad Sci U S A ; 112(19): E2517-26, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918399

RESUMEN

Parkinson's disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (L-DOPA), but its prolonged use causes dyskinesias referred to as L-DOPA-induced dyskinesias (LIDs). Recent studies in animal models of PD have suggested that dyskinesias are associated with the overactivation of G protein-mediated signaling through DA receptors. ß-Arrestins desensitize G protein signaling at DA receptors (D1R and D2R) in addition to activating their own G protein-independent signaling events, which have been shown to mediate locomotion. Therefore, targeting ß-arrestins in PD L-DOPA therapy might prove to be a desirable approach. Here we show in a bilateral DA-depletion mouse model of Parkinson's symptoms that genetic deletion of ß-arrestin2 significantly limits the beneficial locomotor effects while markedly enhancing the dyskinesia-like effects of acute or chronic L-DOPA treatment. Viral rescue or overexpression of ß-arrestin2 in knockout or control mice either reverses or protects against LIDs and its key biochemical markers. In other more conventional animal models of DA neuron loss and PD, such as 6-hydroxydopamine-treated mice or rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated nonhuman primates, ß-arrestin2 overexpression significantly reduced dyskinesias while maintaining the therapeutic effect of L-DOPA. Considerable efforts are being spent in the pharmaceutical industry to identify therapeutic approaches to block LIDs in patients with PD. Our results point to a potential therapeutic approach, whereby development of either a genetic or pharmacological intervention to enhance ß-arrestin2- or limit G protein-dependent D1/D2R signaling could represent a more mechanistically informed strategy.


Asunto(s)
Arrestinas/metabolismo , Discinesias/metabolismo , Levodopa/química , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/química , Animales , Arrestinas/genética , Conducta Animal , Modelos Animales de Enfermedad , Dopamina/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Eliminación de Gen , Macaca , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Oxidopamina/química , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba , beta-Arrestinas
11.
Res Sq ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39011116

RESUMEN

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their 'volume transmission' output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

12.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38895403

RESUMEN

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their "volume transmission" output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

13.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39185175

RESUMEN

Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.

14.
Nat Neurosci ; 27(2): 373-383, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212587

RESUMEN

Rabies-virus-based monosynaptic tracing is a widely used technique for mapping neural circuitry, but its cytotoxicity has confined it primarily to anatomical applications. Here we present a second-generation system for labeling direct inputs to targeted neuronal populations with minimal toxicity, using double-deletion-mutant rabies viruses. Viral spread requires expression of both deleted viral genes in trans in postsynaptic source cells. Suppressing this expression with doxycycline following an initial period of viral replication reduces toxicity to postsynaptic cells. Longitudinal two-photon imaging in vivo indicated that over 90% of both presynaptic and source cells survived for the full 12-week course of imaging. Ex vivo whole-cell recordings at 5 weeks postinfection showed that the second-generation system perturbs input and source cells much less than the first-generation system. Finally, two-photon calcium imaging of labeled networks of visual cortex neurons showed that their visual response properties appeared normal for 10 weeks, the longest we followed them.


Asunto(s)
Virus de la Rabia , Virus de la Rabia/genética , Neuronas/fisiología , Replicación Viral
15.
bioRxiv ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39386427

RESUMEN

Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses. However, the putative roles of other neuronal subpopulations - especially neuromodulatory neurons located in the brainstem that project to long-range target sites in midline anatomical locations where DMGs arise - remain largely unexplored. Here, we demonstrate that the activity of cholinergic midbrain neurons modulates both healthy OPC and malignant DMG proliferation in a circuit-specific manner at sites of long-range cholinergic projections. Optogenetic stimulation of the cholinergic pedunculopontine nucleus (PPN) promotes glioma growth in pons, while stimulation of the laterodorsal tegmentum nucleus (LDT) facilitates proliferation in thalamus, consistent with the predominant projection patterns of each cholinergic midbrain nucleus. Reciprocal signaling was evident, as increased activity of cholinergic neurons in the PPN and LDT was observed in pontine DMG-bearing mice. In co-culture, hiPSC-derived cholinergic neurons form neuron-to-glioma networks with DMG cells and robustly promote proliferation. Single-cell RNA sequencing analyses revealed prominent expression of the muscarinic receptor genes CHRM1 and CHRM3 in primary patient DMG samples, particularly enriched in the OPC-like tumor subpopulation. Acetylcholine, the neurotransmitter cholinergic neurons release, exerts a direct effect on DMG tumor cells, promoting increased proliferation and invasion through muscarinic receptors. Pharmacological blockade of M1 and M3 acetylcholine receptors abolished the activity-regulated increase in DMG proliferation in cholinergic neuron-glioma co-culture and in vivo. Taken together, these findings demonstrate that midbrain cholinergic neuron long-range projections to midline structures promote activity-dependent DMG growth through M1 and M3 cholinergic receptors, mirroring a parallel proliferative effect on healthy OPCs.

16.
bioRxiv ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39229027

RESUMEN

Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on in vivo validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for in vivo testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of in silico enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for the identification of functional enhancers for mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian brain and help us design more efficient genetic tools and potential gene therapies for human neurological diseases.

17.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131318

RESUMEN

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

18.
J Neurosci ; 32(33): 11461-6, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22895728

RESUMEN

Although G-protein-coupled receptor kinase 2 (GRK2) is the most widely studied member of a family of kinases that has been shown to exert powerful influences on a variety of G-protein-coupled receptors, its role in the brain remains largely unknown. Here we report the localization of GRK2 in the mouse brain and generate novel conditional knock-out (KO) mice to assess the physiological importance of this kinase in cholinergic neurons. Mice with the selective deletion of GRK2 in this cell population (ChAT(IRES-cre)Grk2(f/f) KO mice) exhibit reduced behavioral responsiveness to challenge with oxotremorine-M (Oxo-M), a nonselective muscarinic acetylcholine receptor agonist. Specifically, Oxo-M-induced hypothermia, hypolocomotion, and salivation were markedly reduced in these animals, while analgesic responses were unaltered. In contrast, we found that GRK2 deficiency in cholinergic neurons does not alter cocaine-induced psychomotor activation, behavioral sensitization, or conditioned place preference. These results demonstrate that the elimination of GRK2 in cholinergic neurons reduces sensitivity to select muscarinic-mediated behaviors, while dopaminergic effects remain intact and further suggests that GRK2 may selectively impair muscarinic acetylcholine receptor-mediated function in vivo.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Condicionamiento Operante/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/deficiencia , Actividad Motora/genética , Umbral del Dolor/fisiología , Receptores Muscarínicos/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/genética , Encéfalo/citología , Colina O-Acetiltransferasa/genética , Neuronas Colinérgicas/efectos de los fármacos , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Umbral del Dolor/efectos de los fármacos , Salivación/efectos de los fármacos , Salivación/genética
19.
Cell Rep ; 42(8): 112909, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37542722

RESUMEN

Determining which features of the neural code drive behavior requires the ability to simultaneously read out and write in neural activity patterns with high precision across many neurons. All-optical systems that combine two-photon calcium imaging and targeted photostimulation enable the activation of specific, functionally defined groups of neurons. However, these techniques are unable to test how patterns of activity across a population contribute to computation because of an inability to both read and write cell-specific firing rates. To overcome this challenge, we make two advances: first, we introduce a genetic line of mice for Cre-dependent co-expression of a calcium indicator and a potent soma-targeted microbial opsin. Second, using this line, we develop a method for read-out and write-in of precise population vectors of neural activity by calibrating the photostimulation to each cell. These advances offer a powerful and convenient platform for investigating the neural codes of computation and behavior.


Asunto(s)
Calcio , Optogenética , Ratones , Animales , Ratones Transgénicos , Optogenética/métodos , Neuronas/fisiología , Recreación
20.
Nat Neurosci ; 26(2): 350-364, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550293

RESUMEN

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


Asunto(s)
Conectoma , Corteza Visual , Ratones , Animales , Neuronas/fisiología , Encéfalo/fisiología , Corteza Visual/fisiología , Vías Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA