Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(8): e3002281, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37643163

RESUMEN

The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.


Asunto(s)
Arginina Vasopresina , Calcio , Animales , Ratones , Neuronas , Núcleo Supraquiasmático , Neuroglía , Péptido Intestinal Vasoactivo
2.
Reproduction ; 167(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271820

RESUMEN

In brief: In this study, we examined the relationship between BMAL1 expression and the genes regulating steroid biosynthesis in human luteinized granulosa cells. BMAL1 function is crucial for steroid production and proper ovarian function, highlighting the importance of circadian clock regulation in female reproductive health. Abstract: Human luteinized granulosa cells were collected to analyze circadian clock gene expression and its effect on the genes regulating steroid biosynthesis. We used siRNA to knock down the expression of BMAL1 in KGN cells. We measured the expression levels of genes regulating steroid biosynthesis and circadian clock RT-qPCR. We demonstrated that BMAL1 expression positively correlates with genes regulating steroid biosynthesis (CYP11A1, CYP19A1, STAR, and ESR2). The knockdown of BMAL1 in KGN cells revealed a significant decrease in steroid synthase expression. In contrast, when BMAL1 was overexpressed in KGN and HGL5 cells, we observed a significant increase in the expression of steroid synthases, such as CYP11A1 and CYP19A1. These results indicated that BMAL1 positively controls 17ß-estradiol (E2) secretion in granulosa cells. We also demonstrated that dexamethasone synchronization in KGN cells enhanced the rhythmic alterations in circadian clock genes. Our study suggests that BMAL1 plays a critical role in steroid biosynthesis in human luteinized granulosa cells, thereby emphasizing the importance of BMAL1 in the regulation of reproductive physiology.


Asunto(s)
Factores de Transcripción ARNTL , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Femenino , Humanos , Factores de Transcripción ARNTL/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Estradiol/metabolismo , Células de la Granulosa/metabolismo , Progesterona/metabolismo
3.
J Nutr ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395574

RESUMEN

BACKGROUND: Accumulating evidence reveals that inappropriate meal timing contributes to the development of lifestyle-related diseases. An underlying mechanism is thought to be the disruption of the intracellular circadian clock in various tissues based on observations in both systemic and tissue-specific clock gene-deficient mice. However, whether the effects of conditional clock gene knockout are comparable to those of inappropriate meal timing remains unclear. OBJECTIVES: This study aimed to compare the effects of a recently developed 28-h feeding cycle model with those of a core clock gene Bmal1 uterine conditional knockout (Bmal1 cKO) model on uterine mRNA expression profiles. METHODS: The models were generated by subjecting C57BL/6J mice to an 8-h/20-h feeding/fasting cycle for 2 wk and crossing Bmal1-floxed mice with PR-Cre mice. Microarray analyses were conducted using uterine samples obtained at the beginning of the dark and light periods. RESULTS: The analyses identified 516 and 346, significantly 4-fold and 2-fold, up- or downregulated genes in the 28-h feeding cycle and Bmal1 cKO groups, respectively, compared with each control group. Among these genes, only 7 (1.4%) and 63 (18.2%) were significantly up- or downregulated in the other model. Moreover, most (n = 44, 62.9%) of these genes were oppositely regulated. These findings were confirmed by gene set enrichment analyses. CONCLUSIONS: This study reveals that a 28-h feeding cycle and Bmal1 cKO differently affect gene expression profiles and highlights the need for considering this difference to assess the pathophysiology of diseases associated with inappropriate meal timing.

4.
Mol Cell ; 61(2): 187-98, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26774281

RESUMEN

While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kß, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kß preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kß is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kß is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kß. The critical role of the GTP-sensing activity of PI5P4Kß in cancer signifies this lipid kinase as a cancer therapeutic target.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Guanosina Trifosfato/metabolismo , Espacio Intracelular/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Proliferación Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Hidrólisis , Cinética , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Proteómica , Transducción de Señal
5.
Biochem Biophys Res Commun ; 674: 183-189, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37450958

RESUMEN

Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Metilenotetrahidrofolato Deshidrogenasa (NADP) , Animales , Femenino , Ratones , Embarazo , Proliferación Celular , Células Epiteliales/metabolismo , Hidrolasas/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones Transgénicos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo
6.
J Nutr ; 153(8): 2283-2290, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336322

RESUMEN

BACKGROUND: Dysmenorrhea is associated with breakfast skipping in young women, suggesting that fasting in the early active phase disrupts uterine functions. OBJECTIVES: To investigate the possible involvement of the uterine clock system in fasting-induced uterine dysfunction, we examined core clock gene expressions in the uterus using a 28-h interval-fed mouse model. METHODS: Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum feeding), group II (time-restricted feeding, initial 4 h of the active period every day), and group III (time-restricted feeding for 8 h with a 28-h cycle). Groups II and III have the same fasting interval of 20 h. After analyzing feeding and wheel running behaviors during 2 wk of dietary restriction, mice were sacrificed at 4-h intervals, and the expression profiles of clock genes in the uterus and liver were examined by qPCR. RESULTS: The mice in group I took food mainly during the dark phase and those in group II during the initial 4 h of the dark phase, whereas those in group III delayed feeding time by 4 h per cycle. In all groups, spontaneous wheel running was observed during the dark phase. There was no difference in the quantity of feeding and the amount of running exercise among the 3 groups during the second week. The mRNA expressions of peripheral clock genes, Bmal1, Clock, Per1, Per2, Cry1, Nr1d1, and Dbp and a clock-controlled gene, Fabp1, in the uterus showed rhythmic oscillations with normal sequential expression cascade in groups I and II, whereas their expressions decreased and circadian cycles disappeared in group III. In contrast, liver core clock genes in group III showed clear circadian cycles. CONCLUSIONS: Fluctuations in the timing of the first food intake impair the uterine clock oscillator system to reduce clock gene expressions and abolish their circadian rhythms.


Asunto(s)
Ritmo Circadiano , Actividad Motora , Femenino , Ratones , Animales , Ritmo Circadiano/genética , Hígado/metabolismo , Ingestión de Alimentos , Útero
7.
FASEB J ; 36(11): e22606, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36250931

RESUMEN

Kinesin family member 26b (Kif26b) is essential for kidney development, and its deletion in mice leads to kidney agenesis. However, the roles of this gene in adult settings remain elusive. Thus, this study aims to investigate the role of Kif26b in the progression of renal fibrosis. A renal fibrosis model with adenine administration using Kif26b heterozygous mice and wild-type mice was established. Renal fibrosis and the underlying mechanism were investigated. The underlying pathways and functions of Kif26b were evaluated in an in vitro model using primary renal fibroblasts. Kif26b heterozygous mice were protected from renal fibrosis with adenine administration. Renal expressions of connective tissue growth factor (CTGF) and myofibroblast accumulation were reduced in Kif26b heterozygous mice. The expression of nonmuscle myosin heavy chain II (NMHCII), which binds to the C-terminus of Kif26b protein, was also suppressed in Kif26b heterozygous mice. The in vitro study revealed reduced expressions of CTGF, α-smooth muscle actin, and myosin heavy chain 9 (Myh9) via transfection with siRNAs targeting Kif26b in renal fibroblasts (RFB). RFBs, which were transfected by the expression vector of Kif26b, demonstrated higher expressions of these genes than non-transfected cells. Finally, Kif26b suppression and NMHCII blockage led to reduced abilities of migration and collagen gel contraction in renal fibroblasts. Taken together, Kif26b contributes to the progression of interstitial fibrosis via migration and myofibroblast differentiation through Myh9 in the renal fibrosis model. Blockage of this pathway at appropriate timing might be a therapeutic approach for renal fibrosis.


Asunto(s)
Riñón , Cinesinas , Miofibroblastos , Animales , Ratones , Actinas/genética , Actinas/metabolismo , Adenina/metabolismo , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Fibrosis , Riñón/metabolismo , Cinesinas/genética , Miofibroblastos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Diferenciación Celular , Movimiento Celular
8.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675058

RESUMEN

The circadian rhythm, which is necessary for reproduction, is controlled by clock genes. In the mouse uterus, the oscillation of the circadian clock gene has been observed. The transcription of the core clock gene period (Per) and cryptochrome (Cry) is activated by the heterodimer of the transcription factor circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein-1 (Bmal1). By binding to E-box sequences in the promoters of Per1/2 and Cry1/2 genes, the CLOCK-BMAL1 heterodimer promotes the transcription of these genes. Per1/2 and Cry1/2 form a complex with the Clock/Bmal1 heterodimer and inactivate its transcriptional activities. Endometrial BMAL1 expression levels are lower in human recurrent-miscarriage sufferers. Additionally, it was shown that the presence of BMAL1-depleted decidual cells prevents trophoblast invasion, highlighting the importance of the endometrial clock throughout pregnancy. It is widely known that hormone synthesis is disturbed and sterility develops in Bmal1-deficient mice. Recently, we discovered that animals with uterus-specific Bmal1 loss also had poor placental development, and these mice also had intrauterine fetal death. Furthermore, it was shown that time-restricted feeding controlled the uterine clock's circadian rhythm. The uterine clock system may be a possibility for pregnancy complications, according to these results. We summarize the most recent research on the close connection between the circadian clock and reproduction in this review.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas CLOCK , Relojes Circadianos , Reproducción , Animales , Femenino , Humanos , Ratones , Embarazo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica , Placenta/metabolismo , Reproducción/genética , Reproducción/fisiología
9.
Carcinogenesis ; 43(7): 647-658, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35353883

RESUMEN

Serous carcinoma of the uterus (USC) is a pathological subtype of high-grade endometrial cancers, with no effective treatment for advanced cases. Since such refractory tumors frequently harbor antitumor immune tolerance, many immunotherapies have been investigated for various malignant tumors using immuno-competent animal models mimicking their local immunities. In this study, we established an orthotopic mouse model of high-grade endometrial cancer and evaluated the local tumor immunity to explore the efficacy of immunotherapies against USC. A multivariate analysis of 62 human USC cases revealed that the tumor-infiltrating cell status, few CD8+ cells and abundant myeloid-derived suppressor cells (MDSCs), was an independent prognostic factor (P < 0.005). A murine endometrial cancer cell (mECC) was obtained from C57BL/6 mice via endometrium-specific deletion of Pten and Tp53, and another high-grade cell (HPmECC) was established by further overexpressing Myc in mECCs. HPmECCs exhibited higher capacities of migration and anchorage-independent proliferation than mECCs (P < 0.01, P < 0.0001), and when both types of cells were inoculated into the uterus of C57BL/6 mice, the prognosis of mice bearing HPmECC-derived tumors was significantly poorer (P < 0.001). Histopathological analysis of HPmECC orthotopic tumors showed serous carcinoma-like features with prominent tumor infiltration of MDSCs (P < 0.05), and anti-Gr-1 antibody treatment significantly prolonged the prognosis of HPmECC-derived tumor-bearing mice (P < 0.05). High CCL7 expression was observed in human USC and HPmECC, and MDSCs migration was promoted in a CCL7 concentration-dependent manner. These results indicate that antitumor immunity is suppressed in USC due to increased number of tumor-infiltrating MDSCs via CCL signal.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Endometriales , Células Supresoras de Origen Mieloide , Animales , Línea Celular Tumoral , Quimiocina CCL7 , Cistadenocarcinoma Seroso/patología , Neoplasias Endometriales/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Microambiente Tumoral
10.
Cancer Sci ; 113(10): 3376-3389, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35838233

RESUMEN

Although the human papillomavirus (HPV) vaccine is effective for preventing cervical cancers, this vaccine does not eliminate pre-existing infections, and alternative strategies have been warranted. Here, we report that FOXP4 is a new target molecule for differentiation therapy of cervical intraepithelial neoplasia (CIN). An immunohistochemical study showed that FOXP4 was expressed in columnar epithelial, reserve, and immature squamous cells, but not in mature squamous cells of the normal uterine cervix. In contrast with normal mature squamous cells, FOXP4 was expressed in atypical squamous cells in CIN and squamous cell carcinoma lesions. The FOXP4-positive areas significantly increased according to the CIN stages from CIN1 to CIN3. In monolayer cultures, downregulation of FOXP4 attenuated proliferation and induced squamous differentiation in CIN1-derived HPV 16-positive W12 cells via an ELF3-dependent pathway. In organotypic raft cultures, FOXP4-downregulated W12 cells showed mature squamous phenotypes of CIN lesions. In human keratinocyte-derived HaCaT cells, FOXP4 downregulation also induced squamous differentiation via an ELF3-dependent pathway. These findings suggest that downregulation of FOXP4 inhibits cell proliferation and promotes the differentiation of atypical cells in CIN lesions. Based on these results, we propose that FOXP4 is a novel target molecule for nonsurgical CIN treatment that inhibits CIN progression by inducing squamous differentiation.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Carcinoma de Células Escamosas/patología , Proteínas de Unión al ADN , Femenino , Factores de Transcripción Forkhead , Humanos , Papillomaviridae , Infecciones por Papillomavirus/patología , Proteínas Proto-Oncogénicas c-ets , Sulfonamidas , Factores de Transcripción , Neoplasias del Cuello Uterino/patología
11.
Proc Natl Acad Sci U S A ; 116(10): 4528-4537, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782821

RESUMEN

Endometrioid endometrial carcinomas (EECs) carry multiple driver mutations even when they are low grade. However, the biological significance of these concurrent mutations is unknown. We explored the interactions among three signature EEC mutations: loss-of-function (LOF) mutations in PTEN, gain-of-function (GOF) mutations of phosphoinositide 3-kinase (PI3K), and CTNNB1 exon 3 mutations, utilizing in vivo mutagenesis of the mouse uterine epithelium. While epithelial cells with a monoallelic mutation in any one of three genes failed to propagate in the endometrium, any combination of two or more mutant alleles promoted the growth of epithelium, causing simple hyperplasia, in a dose-dependent manner. Notably, Ctnnb1 exon 3 deletion significantly increased the size of hyperplastic lesions by promoting the growth of PTEN LOF and/or PI3K GOF mutant cells through the activation of neoadenogenesis pathways. Although these three mutations were insufficient to cause EEC in intact female mice, castration triggered malignant transformation, leading to myometrial invasion and serosal metastasis. Treatment of castrated mice with progesterone or estradiol attenuated the neoplastic transformation. This study demonstrates that multiple driver mutations are required for premalignant cells to break the growth-repressing field effect of normal endometrium maintained by ovarian steroids and that CTNNB1 exon 3 mutations play critical roles in the growth of preneoplastic cells within the endometrium of premenopausal women and in the myometrial invasion of EECs in menopausal women.


Asunto(s)
Hiperplasia Endometrial/patología , Neoplasias Endometriales/fisiopatología , Ovario/fisiopatología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , beta Catenina/genética , Alelos , Transformación Celular Neoplásica , Progresión de la Enfermedad , Hiperplasia Endometrial/enzimología , Hiperplasia Endometrial/metabolismo , Neoplasias Endometriales/enzimología , Femenino , Humanos , Mutación
12.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886985

RESUMEN

Recently, it was demonstrated that the expression of BMAL1 was decreased in the endometrium of women suffering from recurrent spontaneous abortion. To investigate the pathological roles of uterine clock genes during pregnancy, we produced conditional deletion of uterine Bmal1 (cKO) mice and found that cKO mice could receive embryo implantation but not sustain pregnancy. Gene ontology analysis of microarray suggested that uterine NK (uNK) cell function was suppressed in cKO mice. Histological examination revealed the poor formation of maternal vascular spaces in the placenta. In contrast to WT mice, uNK cells in the spongiotrophoblast layer, where maternal uNK cells are directly in contact with fetal trophoblast, hardly expressed an immunosuppressive NK marker, CD161, in cKO mice. By progesterone supplementation, pregnancy could be sustained until the end of pregnancy in some cKO mice. Although this treatment did not improve the structural abnormalities of the placenta, it recruited CD161-positive NK cells into the spongiotrophoblast layer in cKO mice. These findings indicate that the uterine clock system may be critical for pregnancy maintenance after embryo implantation.


Asunto(s)
Factores de Transcripción ARNTL , Muerte Fetal , Neovascularización Patológica , Placenta , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/inmunología , Animales , Implantación del Embrión/genética , Femenino , Muerte Fetal/etiología , Células Asesinas Naturales/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Placenta/irrigación sanguínea , Placenta/inmunología , Embarazo/genética , Embarazo/inmunología , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/inmunología , Mortinato/genética , Útero/inmunología
13.
Biochem Biophys Res Commun ; 584: 7-14, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34753066

RESUMEN

Patients with triple-negative breast cancer have a poor prognosis as only a few efficient targeted therapies are available. Cancer cells are characterized by their unregulated proliferation and require large amounts of nucleotides to replicate their DNA. One-carbon metabolism contributes to purine and pyrimidine nucleotide synthesis by supplying one carbon atom. Although mitochondrial one-carbon metabolism has recently been focused on as an important target for cancer treatment, few specific inhibitors have been reported. In this study, we aimed to examine the effects of DS18561882 (DS18), a novel, orally active, specific inhibitor of methylenetetrahydrofolate dehydrogenase (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism. Treatment with DS18 led to a marked reduction in cancer-cell proliferation; however, it did not induce cell death. Combinatorial treatment with DS18 and inhibitors of checkpoint kinase 1 (Chk1), an activator of the S phase checkpoint pathway, efficiently induced apoptotic cell death in breast cancer cells and suppressed tumorigenesis in a triple-negative breast cancer patient-derived xenograft model. Mechanistically, MTHFD2 inhibition led to cell cycle arrest and slowed nucleotide synthesis. This finding suggests that DNA replication stress occurs due to nucleotide shortage and that the S-phase checkpoint pathway is activated, leading to cell-cycle arrest. Combinatorial treatment with both inhibitors released cell-cycle arrest, but induced accumulation of DNA double-strand breaks, leading to apoptotic cell death. Collectively, a combination of MTHFD2 and Chk1 inhibitors would be a rational treatment option for patients with triple-negative breast cancer.


Asunto(s)
Aminohidrolasas/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Metilenotetrahidrofolato Deshidrogenasa (NADP)/antagonistas & inhibidores , Enzimas Multifuncionales/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Administración Oral , Aminohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quimioterapia Combinada , Inhibidores Enzimáticos/administración & dosificación , Femenino , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Enzimas Multifuncionales/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
14.
BMC Cancer ; 21(1): 32, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413178

RESUMEN

BACKGROUND: Aberrant expression of P-cadherin has been reported in various cancers, and has been attracting attention as a target for cancer treatment. Ovarian cancer, the leading cause of death among gynecologic malignancies, is classified into four histological subtypes: serous, mucinous, endometrioid, and clear cell, and each has distinct biological behavior. Although a negative survival impact in serous ovarian cancer patients and some functional role in peritoneal dissemination have been reported, differences of P-cadherin expression in histological subtypes and the proportion and distribution of positive cells remain to be investigated. The aims of this study were to clarify the histological and distributional profiles of P-cadherin expression in ovarian cancer for development of target-therapy in near future. METHODS: A total of 162 primary, 60 metastatic, and 8 recurrent tumors (all cases from 162 ovarian cancer patients) were enrolled in the study. Immunohistochemistry was performed for P-cadherin expression. Associations with clinicopathological characteristics and survival were analyzed. RESULTS: P-cadherin expression showed a strong correlation with the FIGO stage, histological subtypes, positive peritoneal dissemination (P < 0.01), positive distant metastasis (P < 0.05), and trend toward negative overall survival probability (P = 0.050). P-cadherin was intensely and broadly expressed in mucinous, endometrioid, and serous subtypes (P < 0.01). Disseminated tumors demonstrated similar P-cadherin expression to primary tumors whereas metastatic lymph nodes demonstrated significantly decreased expression (P < 0.01). CONCLUSIONS: Mucinous, endometrioid, and serous ovarian cancer patients accompanied with peritoneal disseminations are the most potent candidates for P-cadherin targeted drug delivery strategies. P-cadherin-targeted therapy may benefit and improve survival of poor-prognosis populations.


Asunto(s)
Adenocarcinoma Mucinoso/patología , Cadherinas/metabolismo , Cistadenocarcinoma Seroso/patología , Neoplasias Endometriales/patología , Terapia Molecular Dirigida , Neoplasias Ováricas/patología , Neoplasias Peritoneales/secundario , Adenocarcinoma Mucinoso/tratamiento farmacológico , Adenocarcinoma Mucinoso/metabolismo , Biomarcadores de Tumor/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/metabolismo , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
15.
PLoS Genet ; 14(8): e1007630, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30142194

RESUMEN

Mutation of the tumor suppressor Pten often leads to tumorigenesis in various organs including the uterus. We previously showed that Pten deletion in the mouse uterus using a Pgr-Cre driver (Ptenf/fPgrCre/+) results in rapid development of endometrial carcinoma (EMC) with full penetration. We also reported that Pten deletion in the stroma and myometrium using Amhr2-Cre failed to initiate EMC. Since the Ptenf/fPgrCre/+ uterine epithelium was primarily affected by tumorigenesis despite its loss in both the epithelium and stroma, we wanted to know if Pten deletion in epithelia alone will induce tumorigenesis. We found that mice with uterine epithelial loss of Pten under a Ltf-iCre driver (Ptenf/f/LtfCre/+) develop uterine complex atypical hyperplasia (CAH), but rarely EMC even at 6 months of age. We observed that Ptenf/fPgrCre/+ uteri exhibit a unique population of cytokeratin 5 (CK5) and transformation related protein 63 (p63)-positive epithelial cells; these cells mark stratified epithelia and squamous differentiation. In contrast, Ptenf/fLtfCre/+ hyperplastic epithelia do not undergo stratification, but extensive epithelial cell apoptosis. This increased apoptosis is associated with elevation of TGFß levels and activation of downstream effectors, SMAD2/3 in the uterine stroma. Our results suggest that stromal PTEN via TGFß signaling restrains epithelial cell transformation from hyperplasia to carcinoma. In conclusion, this study, using tissue-specific deletion of Pten, highlights the epithelial-mesenchymal cross-talk in the genesis of endometrial carcinoma.


Asunto(s)
Neoplasias Endometriales/genética , Endometrio/metabolismo , Epitelio/patología , Fosfohidrolasa PTEN/genética , Útero/patología , Animales , Apoptosis , Carcinogénesis , Proliferación Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Células Epiteliales/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Hiperplasia/genética , Hiperplasia/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mutación , Miometrio/citología , Miometrio/metabolismo , Fosfohidrolasa PTEN/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Células del Estroma/metabolismo , Útero/citología
16.
Biochem Biophys Res Commun ; 529(4): 1173-1179, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819582

RESUMEN

PURPOSE: Among the members of the DOCK family, DOCK1-5 function as guanine-nucleotide exchange factors for small GTPase Rac1, which regulates the actin cytoskeleton. It has been reported that in model organisms the Dock-Rac axis is required for myoblast fusion. We examined the role of DOCK1-5 in trophoblast fusion herein. METHODS: We used a quantitative polymerase chain reaction (qPCR) to examine the mRNA expressions of DOCK1-5 and differentiation-related genes, i.e., fusogenic genes, in human trophoblastic cell lines, BeWo and JEG-3. We treated BeWo cells with TBOPP and C21 to inhibit DOCK1 and DOCK5. Cell dynamics and cell fusion were assessed by live imaging and immunostaining. The signaling pathways induced by DOCK1/5 inhibition were examined by western blotting. RESULTS: DOCK1 and DOCK5 were expressed in BeWo cells. The inhibition of DOCK1 or DOCK5 did not prevent the cell fusion induced by forskolin (a common reagent for cell fusion); it induced cell fusion. DOCK1 inhibition induced cell death, as did forskolin. DOCK1 and DOCK5 inhibition for 24 and 48 h increased the expression of the genes ASCT2 and SYNCYTIN2, which code responsive proteins of trophoblast cell fusion, respectively. CONCLUSION: DOCK1 and DOCK5 inhibition participates in BeWo cell fusion, probably via pathways independent from forskolin-mediated pathways.


Asunto(s)
Trofoblastos/citología , Trofoblastos/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Agregación Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Fusión Celular , Línea Celular Tumoral , Colforsina/farmacología , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trofoblastos/efectos de los fármacos , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
17.
Cell Tissue Res ; 381(2): 229-237, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32418130

RESUMEN

The submandibular gland (SMG) of newborn mice has no mature acini but has the rudiments of acini called terminal tubules (TT). The TT are composed of TT cells with dark secretory granules and proacinar cells with lighter secretory granules, the latter being considered the immediate precursor of mature acinar cells. TT cells contain a specific secretory protein, submandibular gland protein C (SMGC) and they decrease in number postnatally at a higher rate in males than in females. In the present study, in order to clarify the biological roles of TT cells and their secretory product SMGC, we generated a knockout (KO) mouse strain deficient in SMGC. The KO mice of both sexes grew normally, had normal reproductive capacity and had normal acinar and duct systems in the SMG in adult ages. However, through the neonatal and early postnatal stages, the KO mice were deficient not only in the production of SMGC but also in TT cells. With electron microscopy of the SMG of newborn KO mice, TT cells with characteristic granules were absent and replaced by undifferentiated ductal cells, whereas proacinar cells were normal. These results suggested that the absence of SMGC inhibits the development of TT cells and that the absence of SMGC and TT cells has no notable influence on the postnatal development of the acinar and duct systems in the SMG.


Asunto(s)
Células Acinares , Diferenciación Celular , Mucinas/fisiología , Glándula Submandibular , Células Acinares/citología , Células Acinares/metabolismo , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glándula Submandibular/citología , Glándula Submandibular/metabolismo
18.
J Obstet Gynaecol Res ; 46(11): 2292-2297, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32808405

RESUMEN

AIM: Hypertensive disorders of pregnancy (HDP) are serious conditions that occur in 5-10% of pregnancies. Maternal factors, such as maternal age, obesity, and renal disease, have been described as risk factors. In order to extract the background lifestyle and gynecological characteristics for HDP, we conducted a prospective cohort study. METHODS: Pregnant participants were administered a questionnaire on characteristics, menstrual abnormalities and lifestyle factors. The women were followed individually until 1-month postpartum. We used medical records to examine the relationship between menstrual abnormalities and the onset of HDP. RESULTS: We collected data from 193 pregnant women, and excluding 3 who had miscarriage, examined the records of 190. A total of 26 patients developed HDP, of which 10 had early-onset HDP and 16 had late-onset HDP. Although there was no significant association between HDP and dysmenorrhea just prior to pregnancy, there was a significant increase in the incidence of HDP in patients who experienced dysmenorrhea around the age of 20 years (odds ratio 4.362 [95% CI 1.61-11.81]). CONCLUSION: We found that patients with a history of dysmenorrhea around the age of 20 years have a significantly higher risk of developing HDP. Although dysmenorrhea in young adulthood is ameliorated, it may become apparent as a perinatal disease when a physical load such as pregnancy is applied.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Adulto , Estudios de Cohortes , Dismenorrea/epidemiología , Dismenorrea/etiología , Femenino , Humanos , Hipertensión Inducida en el Embarazo/epidemiología , Embarazo , Estudios Prospectivos , Factores de Riesgo , Adulto Joven
19.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164226

RESUMEN

Embryo implantation in the uterus is an essential process for successful pregnancy in mammals. In general, the endocrine system induces sufficient embryo receptivity in the endometrium, where adhesion-promoting molecules increase and adhesion-inhibitory molecules decrease. Although the precise mechanisms remain unknown, it is widely accepted that maternal-embryo communications, including embryonic signals, improve the receptive ability of the sex steroid hormone-primed endometrium. The embryo may utilize repulsive forces produced by an Eph-ephrin system for its timely attachment to and subsequent invasion through the endometrial epithelial layer. Importantly, the embryonic signals are considered to act on maternal immune cells to induce immune tolerance. They also elicit local inflammation that promotes endometrial differentiation and maternal tissue remodeling during embryo implantation and placentation. Additional clarification of the immune control mechanisms by embryonic signals, such as human chorionic gonadotropin, pre-implantation factor, zona pellucida degradation products, and laeverin, will aid in the further development of immunotherapy to minimize implantation failure in the future.


Asunto(s)
Implantación del Embrión , Sistema Endocrino/metabolismo , Sistema Inmunológico/metabolismo , Placentación , Animales , Adhesión Celular , Femenino , Hormonas Esteroides Gonadales/metabolismo , Humanos , Tolerancia Inmunológica , Metaloproteasas/metabolismo , Embarazo
20.
Cancer Sci ; 110(8): 2658-2666, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31199029

RESUMEN

Although direct adhesion of cancer cells to the mesothelial cell layer is considered to be a key step for peritoneal invasion of ovarian cancer cell masses (OCM), we recently identified a different strategy for the peritoneal invasion of OCM. In 6 out of 20 cases of ovarian carcinoma, extraperitoneal growth of the OCM was observed along with the neovascularization of feeding vessels, which connect the intraperitoneal host stroma and extraperitoneal lesions through the intact mesothelial cell layer. As an early step, the OCMs anchor in the extraperitoneal fibrin networks and then induce the migration of CD34-positive and vascular endothelial growth factor A (VEGF-A)-positive endothelial cells, constructing extraperitoneal vascular networks around the OCM. During the extraperitoneal growth of OCM, podoplanin-positive and α smooth muscle actin (αSMA)-positive cancer-associated fibroblasts (CAF) appears. In more advanced lesions, the boundary line of mesothelial cells disappears around the insertion areas of feeding vessels and then extraperitoneal and intraperitoneal stroma are integrated, enabling the OCM to invade the host stroma, being associated with CAF. In addition, tissue factors (TF) are strongly detected around these peritoneal implantation sites and their levels in ascites were higher than that in blood. These findings demonstrate the presence of neovascularization around fibrin net-anchored OCMs on the outer side of the intact peritoneal surface, suggesting a novel strategy for peritoneal invasion of ovarian cancer and TF-targeted intraperitoneal anti-cancer treatment. We observed and propose a novel strategy for peritoneal implantation of ovarian cancer. The strategy includes the preinvasive growth of fibrin-anchored cancer cells along with neovascularization on the outer side of the intact peritoneal surface.


Asunto(s)
Fibrina/metabolismo , Invasividad Neoplásica/patología , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Adulto , Anciano , Ascitis/metabolismo , Ascitis/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Epitelio/metabolismo , Epitelio/patología , Femenino , Humanos , Persona de Mediana Edad , Neovascularización Patológica/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/patología , Peritoneo/metabolismo , Peritoneo/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA