Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Neurosci ; 11(4): 476-87, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18344994

RESUMEN

Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPbeta and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo/fisiología , Peroxirredoxinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tiorredoxinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/fisiología , Ratones , Neuronas/metabolismo , Proteínas Nucleares , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxidasas , Proteínas/metabolismo , Ratas , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Transcripción Genética/fisiología
2.
Neuron ; 49(6): 823-32, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16543131

RESUMEN

Myelin, the insulating layers of membrane wrapped around axons by oligodendrocytes, is essential for normal impulse conduction. It forms during late stages of fetal development but continues into early adult life. Myelination correlates with cognitive development and can be regulated by impulse activity through unknown molecular mechanisms. Astrocytes do not form myelin, but these nonneuronal cells can promote myelination in ways that are not understood. Here, we identify a link between myelination, astrocytes, and electrical impulse activity in axons that is mediated by the cytokine leukemia inhibitory factor (LIF). These findings show that LIF is released by astrocytes in response to ATP liberated from axons firing action potentials, and LIF promotes myelination by mature oligodendrocytes. This activity-dependent mechanism promoting myelination could regulate myelination according to functional activity or environmental experience and may offer new approaches to treating demyelinating diseases.


Asunto(s)
Astrocitos/efectos de la radiación , Comunicación Celular/fisiología , Estimulación Eléctrica/métodos , Proteínas de la Mielina/metabolismo , Oligodendroglía/fisiología , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Adenosina/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Adenosina-5'-(N-etilcarboxamida)/farmacología , Anestésicos Locales/farmacología , Animales , Anticuerpos/farmacología , Astrocitos/fisiología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/efectos de la radiación , Compuestos Azo , Western Blotting/métodos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/efectos de la radiación , Recuento de Células/métodos , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo/métodos , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/metabolismo , Interacciones Farmacológicas , Embrión de Mamíferos , Ensayo de Inmunoadsorción Enzimática/métodos , Ganglios Espinales/citología , Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Interleucina-6/inmunología , Interleucina-6/metabolismo , Factor Inhibidor de Leucemia , Ratones , Modelos Biológicos , Proteína Básica de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Naftalenos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Antígenos O/metabolismo , ARN Mensajero/biosíntesis , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Células Madre , Tetrodotoxina/farmacología , Tionucleótidos/farmacología
3.
PLoS One ; 3(10): e3329, 2008 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-18830410

RESUMEN

Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.


Asunto(s)
Envejecimiento/genética , Encéfalo/metabolismo , Evolución Molecular , ARN Mensajero/genética , Sinapsis/fisiología , Adulto , Anciano , Animales , Western Blotting , Humanos , Ratones , Filogenia , Especificidad de la Especie , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA