Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biochem Biophys Res Commun ; 691: 149328, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38043199

RESUMEN

The protein-specific methyltransferase Set7/9 is known for its ability to add methyl groups to lysine residues on many targets, including as histones H1.4, H2A, H2B, H3, and non-histone proteins such as p53, NFκB, E2F1, pRb, Hif1α, ß-catenin, STAT3, and YY1 transcription factors. Set7/9 affects both the landscape of histone modifications and the functionality of the aforementioned TFs, and acts as an essential mediator of vital cellular functions, regulating tumor growth and the neoplastic transformation of normal cells. The number of studies demonstrating the determining role of Set7/9 in cancer is growing. Importantly, the effect of Set7/9 on tumor progression is ambivalent and cancer-type dependent. In this study we analyzed the potential participation of Set7/9 in the essential cellular processes in breast cancer cells and revealed that Set7/9 may be involved in DNA damage signaling and DNA repair processes. We further demonstrated that Set7/9 expression is downregulated in cancerous breast tissues and inversely correlated to PARP1 expression level. Using breast cancer cell lines of HER2-positive and triple negative subtypes we have shown that the attenuation of Set7/9 led to the stabilization of PARP1 on both mRNA and protein levels that in turn resulted in cisplatin resistance acquiring. Finally, we demonstrated that the combination of cisplatin with FDA approved PARP1 inhibitor niraparib (Zejula) has a synergistic effect with cisplatin and thereby allows to overcome cisplatin resistance of Set7/9 deficient breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Cisplatino , Humanos , Femenino , Cisplatino/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Histonas/metabolismo , Células MCF-7 , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
2.
Biochem Biophys Res Commun ; 589: 29-34, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34883287

RESUMEN

Autophagy is a highly conserved process of cellular self-digestion that involves the formation of autophagosomes for the delivery of intracellular components and dysfunctional organelles to lysosomes. This process is induced by different signals including starvation, mitochondrial dysfunction, and DNA damage. The molecular link between autophagy and DNA damage is not well understood yet. Importantly, tumor cells utilize the mechanism of autophagy to cope with genotoxic anti-cancer drug therapy. Another mechanism of drug resistance is provided to cancer cells via the execution of the EMT program. One of the critical transcription factors of EMT is Zeb1. Here we demonstrate that Zeb1 is involved in the regulation of autophagy in several breast cancer cell models. On the molecular level, Zeb1 likely facilitates autophagy through the regulation of autophagic genes, resulting in increased LC3-II levels, augmented staining with Lysotracker, and increased resistance to several genotoxic drugs. The attenuation of Zeb1 expression in TNBC cells led to the opposite effect. Consequently, we propose that Zeb1 augments the resistance of breast cancer cells to genotoxic drugs, at least partially, via autophagy. Collectively, we have uncovered a novel function of Zeb1 in the regulation of autophagy in breast cancer cells.


Asunto(s)
Autofagia , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Mutágenos/toxicidad , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Daño del ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
3.
Biochem Biophys Res Commun ; 563: 119-125, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34090148

RESUMEN

Autophagy is a special catabolic cellular program that is induced in response to deprivation of nutrients and energy starvation. During the execution of this program, cellular components, including aggregates, as well as damaged organelles and some proteins are encapsulated in special vesicles known as autophagosomes and subsequently are degraded after fusion of autophagosomes with lysosomes. Importantly, at late stages of tumorigenesis cancer cells employ autophagy to sustain proliferation in unfavorable conditions, including anti-cancer drug therapy. E3 ubiquitin ligases play an important role in controlling autophagy. Here we demonstrate that the E3 ligase, a p53-induced RING-H2 protein (Pirh2), is involved in the regulation of autophagy in non-small cell lung cancer cells. Knockdown of Pirh2 decreased the expression of genes involved in all steps of autophagy. Concomitantly, Pirh2 knockdown cell lines exhibited much less of the processed form of LC3 compared to the respective cell lines with normal levels of Pirh2. These results were confirmed by the immune fluorescence microscopy using LC3 antibody and the LysoTracker dye. In agreement with the protective role of autophagy, cells with attenuated expression of Pirh2 were more sensitive to the treatment with doxorubicin. Collectively, we have uncovered a novel function of Pirh2 in the regulation of autophagy in lung cancer cells.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/patología , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética
4.
Biochem Biophys Res Commun ; 572: 41-48, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343833

RESUMEN

The SET domain containing lysine-specific methyltransferase, Set7/9, covalently attaches methyl moieties to a variety of histone and non-histone substrates. Among the substrates of Set7/9 are: p53, NF-kB, PARP1, E2F1, and other transcription factors that regulate many vital processes in the cell. Through the post-translational regulation of these critical master-regulators Set7/9 is involved in regulation of cell proliferation, cancer progression, and DNA damage response. Noteworthy, the role of Set7/9 in tumorigenesis is contradictory and apparently depends on the cellular context. In this study, we investigated the effect of Set7/9 on tumorigenic characteristics of lung cancer cells. We showed that CRISPR/Cas9-mediated knock-out of Set7/9 in A549 and its shRNA-mediated knock-down in H1299 NSCLC cell lines both augment the proliferation rate of tumor cells compared to the matching wild-type cells. Mechanistically, ablation of Set7/9 increased the expression of cyclin A2 and D1 genes thereby promoting the accumulation of cells in S phase. Furthermore, knockout of Set7/9 decreased the expression of E-cadherin, whose product is critical for cell-cell interactions. Accordingly, this led to the increased migration of lung cancer cells. Finally, both ablation or pharmacological inhibition of Set7/9 enzymatic methyltransferase activity by the selective inhibitor (R)-PFI-2 sensitized NSCLC cells to genotoxic drug, doxorubicin. This effect was also recapitulated on patients-derived NSCLC cell lines. Taken together, our results suggest that Set7/9 plays anti-proliferative and DNA damage-protective roles in NSCLC cells and hence represents an attractive target for anti-cancer chemotherapy.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Antibióticos Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Isoquinolinas/farmacología , Sulfonamidas/farmacología , Células Tumorales Cultivadas
5.
Biochem Biophys Res Commun ; 525(4): 1018-1024, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32178870

RESUMEN

Lysine-specific methyltransferase Set7/9 (KMT7) belongs to the SET domain family of proteins. Besides the SET domain, Set7/9 also contains a so-called MORN (Membrane Occupation and Recognition Nexus) domain whose function in high eukaryotes is largely unknown. Set7/9 has been shown to specifically methylate both histones H1 and H3 as well as a number of non-histone substrates, including p53, E2F1, RelA, AR, and other important transcription factors. However, despite the ever growing list of potential substrates of Set7/9, the question of its substrate specificity is still debatable. To gain a better understanding of the Set7/9 substrate specificity and to clarify the importance of structural domains of Set7/9 for protein-protein interactions (PPIs) we determined interactomes for both MORN and SET domains of Set7/9 by pull-down assay coupled with mass-spectrometry. Importantly, we demonstrated that most of PPIs of Set7/9 are mediated via its MORN domain. The latter has preference towards positively charged amino acids that are often found in RNA-binding proteins. One of the Set7/9-interacting proteins was identified as Sam68, an RNA splicing protein with a KH (heterogeneous nuclear ribonucleoprotein K (hnRNP K) homology) domain. Importantly, the RG-rich domain of Sam68 that is also present in many splicing factors was found to interact with Set7/9. We revealed that Set7/9 not only co-immunoprecipitated with Sam68, but also methylated the latter on K208. Functionally, knockout of Set7/9 decreased the protein level of Sam68 in cells resulting in altered regulation of cell cycle and apoptosis. Finally, the bioinformatics analysis established a correlation between the high levels of Sam68/Set7/9 co-expression and better survival rates of patients with colon cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias del Colon/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Biología Computacional , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Lisina/metabolismo , Espectrometría de Masas , Metilación , Unión Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas/genética , Proteínas de Unión al ARN/genética
6.
Nano Lett ; 18(8): 4641-4646, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29969563

RESUMEN

Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use. In addition, the development of antibodies to target membrane proteins is a very challenging task. Accordingly, the main focus of the present work is the design of supramolecular agents for the targeting of membrane proteins in cancer cells and, hence, more-specific drug delivery. These were produced using a novel double-imprinting approach based on the solid-phase method for preparation of molecularly imprinted polymer nanoparticles (nanoMIPs), which were loaded with doxorubicin and targeted toward a linear epitope of EGFR. Additionally, upon binding, doxorubicin-loaded anti-EGFR nanoMIPs elicited cytotoxicity and apoptosis only in those cells that over-expressed EGFR. Thus, this approach can provide a plausible alternative to conventional antibodies and sets up a new paradigm for the therapeutic application of this class of materials against clinically relevant targets. Furthermore, nanoMIPs can promote the development of cell imaging tools against difficult targets such as membrane proteins.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Receptores ErbB/metabolismo , Impresión Molecular/métodos , Nanopartículas/química , Antineoplásicos/administración & dosificación , Neoplasias de la Mama , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Liberación de Fármacos , Femenino , Humanos , Terapia Molecular Dirigida , Tamaño de la Partícula , Polimerizacion , Polímeros/química , Propiedades de Superficie
7.
J Cell Physiol ; 234(1): 171-180, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30146800

RESUMEN

Mycoplasmas are bacteria lacking the cell wall, which is the major characteristic of this taxonomic class (Mollicutes). Among bacteria, mycoplasmas possess the smallest genome known for free-living organisms. This feature limits the autonomy of bacteria and makes them increasingly susceptible to changes in the host organism. Many mycoplasmas themselves cause pathological changes in the host organism, often complicated by immune disorders. Infection with certain strains of mycoplasma results in the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells, which is the major mediator of the inflammatory response. Furthermore, mycoplasmas can inhibit p53-mediated checkpoint control of cell cycle and apoptosis. Collectively, these properties indicate that mycoplasmas might act as cancer-promoting factors. In this review, we summarize the information known to date on the role of mycoplasmas in the regulation of the host immune response and their functional interactions with p53.


Asunto(s)
Infecciones por Mycoplasma/genética , Mycoplasma/patogenicidad , FN-kappa B/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/genética , Apoptosis/inmunología , División Celular/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Mycoplasma/genética , Mycoplasma/inmunología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/microbiología , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología
8.
Biochem Biophys Res Commun ; 495(1): 1233-1239, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29175211

RESUMEN

As an anticancer therapeutic, Interferon-alpha (IFNα) is used to treat a number of malignancies. However, the application of IFNα is restricted mostly due to its high toxicity. Therefore, novel combination therapeutic regimens are required to decrease the toxicity of IFNα and enhance its efficacy. Here we show that the treatment of p53-deficient human non-small lung carcinoma H1299 cells with IFNα in combination with an inhibitor of MDM2, Nutlin-3a, synergistically affects the proliferation of cancer cells. Importantly, Nutlin-3a was able to reduce the effective dose of IFNα about 3.4 times. Strikingly, this phenomenon is p53-independent, because H1299 cells lack p53, but is highly dependent on MDM2 because its ablation makes tumor cells completely insensitive to IFNα alone or in combination with Nutlin-3a. On the contrary, overexpression of MDM2 makes H1299 cells more susceptible to both IFNα and IFNα/Nutlin-3a treatments. Mechanistically, treatment with combination of IFNα and Nutlin-3a attenuates cyclin D1/CDK4 on the protein level and hence blocks cell cycle progression. This mechanism may be responsible, at least in part, for the anti-proliferative effects on H1299 cells observed. Our data suggest that the expression of MDM2 confers sensitivity of cancer cells to IFNα/Nutlin-3a treatment. Moreover, our data also confirm positive effect of Nutlin even on p53-deficient neoplasms.


Asunto(s)
Imidazoles/administración & dosificación , Interferón-alfa/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Piperazinas/administración & dosificación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Resultado del Tratamiento
9.
Cell Biol Int ; 42(9): 1086-1096, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29851182

RESUMEN

Ca2+ -mediated signaling is widely spread in nature and plays critical role in the individual development of various organisms ranging from microorganisms to mammals. In vertebrates, Ca2+ is involved in important developmental events: fertilization, body plan establishment, and organogenesis. The two later events are defined by embryonic stem cells (ESCs). ESCs are capable of self-renewal and are pluripotent by nature, that is, can give rise to all types of cells that make up the body. Given the paramount importance of Ca2+ signalization in the development, it is therefore not surprising this process also plays role in the biology of stem cells. In this review, we scrutinize the published experimental data on the role of Ca2+ ions in embryonic stem cells self-renewal and pluripotency. In line with this, we also discuss possible mechanisms of p53 inhibition as a major hindrance to self-renewal of ESCs. Finally, we argue about the role of G-protein-coupled receptors (GPCRs), the largest family of heteromeric transmembrane receptors, and GPCR-mediated signalization in stem cells, and propose the role for the GPCR-G-protein-PLC-Ca2+ -downstream signaling pathway in the regulation of pluripotency of both mouse and human ESCs.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Canales de Calcio/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos
10.
Biol Direct ; 19(1): 41, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812048

RESUMEN

The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Animales , Procesamiento Proteico-Postraduccional , Metilación , Células Madre/metabolismo
11.
Int J Biol Sci ; 19(8): 2304-2318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215983

RESUMEN

Reactive oxygen species (ROS) induce multiple signaling cascades in the cell and hence play an important role in the regulation of the cell's fate. ROS can cause irreversible damage to DNA and proteins resulting in cell death. Therefore, finely tuned regulatory mechanisms exist in evolutionarily diverse organisms that are aimed at the neutralization of ROS and its consequences with respect to cellular damage. The SET domain-containing lysine methyltransferase Set7/9 (KMT7, SETD7, SET7, SET9) post-translationally modifies several histones and non-histone proteins via monomethylation of the target lysines in a sequence-specific manner. In cellulo, the Set7/9-directed covalent modification of its substrates affects gene expression, cell cycle, energy metabolism, apoptosis, ROS, and DNA damage response. However, the in vivo role of Set7/9 remains enigmatic. In this review, we summarize the currently available information regarding the role of methyltransferase Set7/9 in the regulation of ROS-inducible molecular cascades in response to oxidative stress. We also highlight the in vivo importance of Set7/9 in ROS-related diseases.


Asunto(s)
Regulación de la Expresión Génica , Histonas , Especies Reactivas de Oxígeno/metabolismo , Histonas/metabolismo , Transducción de Señal/genética , Ciclo Celular/genética
12.
Antioxidants (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38001865

RESUMEN

Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and ß-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.

13.
Metabolites ; 13(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37233697

RESUMEN

20-Hydroxyecdysone (20E) is an arthropod hormone which is synthesized by some plants as part of their defense mechanism. In humans, 20E has no hormonal activity but possesses a number of beneficial pharmacological properties including anabolic, adaptogenic, hypoglycemic, and antioxidant properties, as well as cardio-, hepato-, and neuroprotective features. Recent studies have shown that 20E may also possess antineoplastic activity. In the present study, we reveal the anticancer properties of 20E in Non-Small Cell Lung Cancer (NSCLC) cell lines. 20E displayed significant antioxidant capacities and induced the expression of antioxidative stress response genes. The RNA-seq analysis of 20E-treated lung cancer cells revealed the attenuation of genes involved in different metabolic processes. Indeed, 20E suppressed several enzymes of glycolysis and one-carbon metabolism, as well as their key transcriptional regulators-c-Myc and ATF4, respectively. Accordingly, using the SeaHorse energy profiling approach, we observed the inhibition of glycolysis and respiration mediated by 20E treatment. Furthermore, 20E sensibilized lung cancer cells to metabolic inhibitors and markedly suppressed the expression of Cancer Stem Cells (CSCs) markers. Thus, in addition to the known beneficial pharmacological activities of 20E, our data uncovered novel antineoplastic properties of 20E in NSCLC cells.

14.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38139802

RESUMEN

The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.

15.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890166

RESUMEN

Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.

16.
Cancers (Basel) ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954450

RESUMEN

Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly, the PI3K/AKT pathway also coordinates the epithelial-mesenchymal transition (EMT), which is pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this effect is still not fully understood. This review is an attempt to systematize the published information on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of the PI3K/AKT pathway in EMT.

17.
Life (Basel) ; 12(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35330113

RESUMEN

Lysine-specific methyltransferase 7 (KMT7) SET7/9, aka Set7, Set9, or SetD7, or KMT5 was discovered 20 years ago, yet its biological role remains rather enigmatic. In this review, we analyze the particularities of SET7/9 enzymatic activity and substrate specificity with respect to its biological importance, mostly focusing on its two well-characterized biological functions: cellular proliferation and stress response.

18.
Front Mol Biosci ; 9: 928399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813818

RESUMEN

The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.

19.
Cells ; 11(9)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563824

RESUMEN

The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.


Asunto(s)
Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas , Puntos de Control del Ciclo Celular , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
20.
Front Pediatr ; 10: 925340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899134

RESUMEN

Medulloblastoma is one of the most common pediatric central nervous system malignancies worldwide, and it is characterized by frequent leptomeningeal metastasizing. We report a rare case of primary leptomeningeal medulloblastoma of an 11-year-old Caucasian girl with a long-term disease history, non-specific clinical course, and challenges in the diagnosis verification. To date, 4 cases of pediatric primary leptomeningeal medulloblastoma are reported, and all of them are associated with unfavorable outcomes. The approaches of neuroimaging and diagnosis verification are analyzed in the article to provide opportunities for effective diagnosis of this disease in clinical practice. The reported clinical case of the primary leptomeningeal medulloblastoma is characterized by MR images with non-specific changes in the brain and spinal cord and by 18FDG-PET/CT images with diffuse heterogeneous hyperfixation of the radiopharmaceutical along the whole spinal cord. The immunohistochemistry and next-generation sequencing analyses of tumor samples were performed for comprehensive characterization of the reported clinical case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA