Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Med ; 30(1): 51, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632526

RESUMEN

BACKGROUND: The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS: A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS: The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS: The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.


Asunto(s)
COVID-19/complicaciones , Sepsis , Niño , Humanos , Proteoma , SARS-CoV-2 , Estudios de Casos y Controles , Proteómica , Síndrome de Respuesta Inflamatoria Sistémica , Proteínas Sanguíneas
2.
Clin Proteomics ; 21(1): 33, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760690

RESUMEN

BACKGROUND: COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS: A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS: Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS: The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.

3.
Mol Med ; 29(1): 26, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809921

RESUMEN

BACKGROUND: Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as "Long-COVID". A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID. METHODS: A case-control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of the UniProt Knowledgebase. RESULTS: Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bonferonni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell types, including leukocytes and platelets, as key components associated with Long-COVID. CONCLUSIONS: Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of Long-COVID and targeted therapeutics.


Asunto(s)
COVID-19 , Humanos , Proteómica , Estudios de Casos y Controles , Aprendizaje Automático , Síndrome Post Agudo de COVID-19 , Biomarcadores
4.
Mol Med ; 28(1): 122, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217108

RESUMEN

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Asunto(s)
Biomarcadores , COVID-19 , Biomarcadores/sangre , COVID-19/complicaciones , Estudios de Casos y Controles , Endoglina , Femenino , Humanos , Integrina alfa4beta1 , Molécula 1 de Adhesión Intercelular , Metaloproteinasa 1 de la Matriz , Neovascularización Patológica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Trombomodulina , Molécula 1 de Adhesión Celular Vascular , Factor A de Crecimiento Endotelial Vascular , Factor D de Crecimiento Endotelial Vascular , Síndrome Post Agudo de COVID-19
5.
Clin Proteomics ; 19(1): 50, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36572854

RESUMEN

BACKGROUND: Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS: Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS: The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS: Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.

6.
Clin Chem Lab Med ; 59(10): 1662-1669, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34144643

RESUMEN

OBJECTIVES: Severe traumatic brain injury (sTBI) patients suffer high mortality. Accurate prognostic biomarkers have not been identified. In this exploratory study, we performed targeted proteomics on plasma obtained from sTBI patients to identify potential outcome biomarkers. METHODS: Blood sample was collected from patients admitted to the ICU suffering a sTBI, using standardized clinical and computerized tomography (CT) imaging criteria. Age- and sex-matched healthy control subjects and sTBI patients were enrolled. Targeted proteomics was performed on plasma with proximity extension assays (1,161 proteins). RESULTS: Cohorts were well-balanced for age and sex. The majority of sTBI patients were injured in motor vehicle collisions and the most frequent head CT finding was subarachnoid hemorrhage. Mortality rate for sTBI patients was 40%. Feature selection identified the top performing 15 proteins for identifying sTBI patients from healthy control subjects with a classification accuracy of 100%. The sTBI proteome was dominated by markers of vascular pathology, immunity/inflammation, cell survival and macrophage/microglia activation. Receiver operating characteristic (ROC) curve analyses demonstrated areas-under-the-curves (AUC) for identifying sTBI that ranged from 0.870-1.000 (p≤0.005). When mortality was used as outcome, ROC curve analyses identified the top 3 proteins as Willebrand factor (vWF), Wnt inhibitory factor-1 (WIF-1), and colony stimulating factor-1 (CSF-1). Combining vWF with either WIF-1 or CSF-1 resulted in excellent mortality prediction with AUC of 1.000 for both combinations (p=0.011). CONCLUSIONS: Targeted proteomics with feature classification and selection distinguished sTBI patients from matched healthy control subjects. Two protein combinations were identified that accurately predicted sTBI patient mortality. Our exploratory findings require confirmation in larger sTBI patient populations.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Humanos , Pronóstico , Tomografía Computarizada por Rayos X
7.
BMC Public Health ; 21(1): 40, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407254

RESUMEN

BACKGROUND: Our objective was to determine the impacts of artificial intelligence (AI) on public health practice. METHODS: We used a fundamental qualitative descriptive study design, enrolling 15 experts in public health and AI from June 2018 until July 2019 who worked in North America and Asia. We conducted in-depth semi-structured interviews, iteratively coded the resulting transcripts, and analyzed the results thematically. RESULTS: We developed 137 codes, from which nine themes emerged. The themes included opportunities such as leveraging big data and improving interventions; barriers to adoption such as confusion regarding AI's applicability, limited capacity, and poor data quality; and risks such as propagation of bias, exacerbation of inequity, hype, and poor regulation. CONCLUSIONS: Experts are cautiously optimistic about AI's impacts on public health practice, particularly for improving disease surveillance. However, they perceived substantial barriers, such as a lack of available expertise, and risks, including inadequate regulation. Therefore, investment and research into AI for public health practice would likely be beneficial. However, increased access to high-quality data, research and education regarding the limitations of AI, and development of rigorous regulation are necessary to realize these benefits.


Asunto(s)
Inteligencia Artificial , Salud Pública , Asia , Macrodatos , Humanos , América del Norte
8.
Biochem Biophys Res Commun ; 530(1): 240-245, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828293

RESUMEN

Historically, the field of tissue engineering has been adept at modulating the chemical and physical microenvironment. This approach has yielded significant progress, but it is imperative to further integrate our understanding of other fundamental cell signaling paradigms into tissue engineering methods. Bioelectric signaling has been demonstrated to be a vital part of tissue development, regeneration, and function across organ systems and the extracellular matrix is known to alter the bioelectric properties of cells. Thus, there is a need to bolster our understanding of how matrix and bioelectric signals interact to drive cell phenotype. We examine how cardiac progenitor cell differentiation is altered by simultaneous changes in both resting membrane potential and extracellular matrix composition. Pediatric c-kit+ cardiac progenitor cells were differentiated on fetal or adult cardiac extracellular matrix while being treated with drugs that alter resting membrane potential. Smooth muscle gene expression was increased with depolarization and decreased with hyperpolarization while endothelial and cardiac expression were unchanged. Early smooth muscle protein expression is modified by matrix developmental age, with fetal ECM appearing to amplify the effects of resting membrane potential. Thus, combining matrix composition and bioelectric signaling represents a potential alternative for guiding cell behavior in tissue engineering and regenerative medicine.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/química , Miocitos Cardíacos/citología , Miocitos del Músculo Liso/citología , Células Madre/citología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Matriz Extracelular/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Células Madre/efectos de los fármacos , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
9.
Clin J Sport Med ; 30(5): e147-e149, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30969186

RESUMEN

OBJECTIVE: To assess the predictive capability of the postconcussion symptom scale (PCSS) of the sport concussion assessment tool (SCAT) III to differentiate concussed and nonconcussed adolescents. DESIGN: Retrospective. SETTING: Tertiary. PARTICIPANTS: Sixty-nine concussed (15.2 ± 1.6 years old) and 55 control (14.4 ± 1.7 years old) adolescents. INDEPENDENT VARIABLES: Postconcussion symptom scale. MAIN OUTCOME MEASURE: Two-proportion z-test determined differences in symptom endorsement between groups. To assess the predictive power of the PCSS, we trained an ensemble classifier composed of a forest of 1000 decision trees to classify subjects as concussed, or not concussed, based on PCSS responses. The initial classifier was trained on all 22-concussion symptoms addressed in the PCSS, whereas the second classifier removed concussion symptoms that were not statistically significant between groups. RESULTS: Concussion symptoms common between groups were trouble falling asleep, more emotional, irritability, sadness, and anxious. After removal, analysis of the second classifier indicated that the 5 leading feature rankings of symptoms were headache, head pressure, light sensitivity, noise sensitivity, and "don't feel right," which accounted for 52% of the variance between groups. CONCLUSIONS: Collectively, self-reported symptoms through the PCSS can differentiate concussed and nonconcussed adolescents. However, predictability for adolescent patients may be improved by removing emotional and sleep domain symptoms.


Asunto(s)
Traumatismos en Atletas/diagnóstico , Síndrome Posconmocional/diagnóstico , Evaluación de Síntomas/métodos , Adolescente , Síntomas Afectivos/diagnóstico , Ansiedad/diagnóstico , Niño , Árboles de Decisión , Femenino , Humanos , Genio Irritable , Masculino , Evaluación de Resultado en la Atención de Salud , Síndrome Posconmocional/complicaciones , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Tristeza , Autoinforme , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico , Deportes Juveniles
10.
Adv Exp Med Biol ; 1098: 59-83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30238366

RESUMEN

The role of the cardiac extracellular matrix (cECM) in providing biophysical and biochemical cues to the cells housed within during disease and development has become increasingly apparent. These signals have been shown to influence many fundamental cardiac cell behaviors including contractility, proliferation, migration, and differentiation. Consequently, alterations to cell phenotype result in directed remodeling of the cECM. This bidirectional communication means that the cECM can be envisioned as a medium for information storage. As a result, the reprogramming of the cECM is increasingly being employed in tissue engineering and regenerative medicine as a method with which to treat disease. In this chapter, an overview of the composition and structure of the cECM as well as its role in cardiac development and disease will be provided. Additionally, therapeutic modulation of cECM for cardiac regeneration as well as bottom-up and top-down approaches to ECM-based cardiac tissue engineering is discussed. Finally, lingering questions regarding the role of cECM in tissue engineering and regenerative medicine are offered as a catalyst for future research.


Asunto(s)
Matriz Extracelular , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Remodelación Atrial , Matriz Extracelular/ultraestructura , Proteínas de la Matriz Extracelular/fisiología , Humanos , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/ultraestructura , Impresión Tridimensional , Andamios del Tejido , Remodelación Ventricular
11.
BMC Genomics ; 16: 497, 2015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26141061

RESUMEN

BACKGROUND: Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS: We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION: The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma/genética , Ratones/genética , Animales , Variación Genética/genética , Genómica/métodos
12.
Bioinformatics ; 29(2): 262-3, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23129301

RESUMEN

SUMMARY: Copy number variants (CNVs) are a major source of genetic variation. Comparing CNVs between samples is important in elucidating their potential effects in a wide variety of biological contexts. HD-CNV (hotspot detector for copy number variants) is a tool for downstream analysis of previously identified CNV regions from multiple samples, and it detects recurrent regions by finding cliques in an interval graph generated from the input. It creates a unique graphical representation of the data, as well as summary spreadsheets and UCSC (University of California, Santa Cruz) Genome Browser track files. The interval graph, when viewed with other software or by automated graph analysis, is useful in identifying genomic regions of interest for further study. AVAILABILITY AND IMPLEMENTATION: HD-CNV is an open source Java code and is freely available, with tutorials and sample data from http://daleylab.org. CONTACT: jcamer7@uwo.ca


Asunto(s)
Variaciones en el Número de Copia de ADN , Programas Informáticos , Genoma Humano , Genómica , Humanos , Cariotipo
13.
J Inflamm (Lond) ; 21(1): 7, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454423

RESUMEN

BACKGROUND: Sepsis is a dysregulated systemic inflammatory response triggered by infection, resulting in organ dysfunction. A major challenge in clinical pediatrics is to identify sepsis early and then quickly intervene to reduce morbidity and mortality. As blood biomarkers hold promise as early sepsis diagnostic tools, we aimed to measure a large number of blood inflammatory biomarkers from pediatric sepsis patients to determine their predictive ability, as well as their correlations with clinical variables and illness severity scores. METHODS: Pediatric patients that met sepsis criteria were enrolled, and clinical data and blood samples were collected. Fifty-eight inflammatory plasma biomarker concentrations were determined using immunoassays. The data were analyzed with both conventional statistics and machine learning. RESULTS: Twenty sepsis patients were enrolled (median age 13 years), with infectious pathogens identified in 75%. Vasopressors were administered to 85% of patients, while 55% received invasive ventilation and 20% were ventilated non-invasively. A total of 24 inflammatory biomarkers were significantly different between sepsis patients and age/sex-matched healthy controls. Nine biomarkers (IL-6, IL-8, MCP-1, M-CSF, IL-1RA, hyaluronan, HSP70, MMP3, and MMP10) yielded AUC parameters > 0.9 (95% CIs: 0.837-1.000; p < 0.001). Boruta feature reduction yielded 6 critical biomarkers with their relative importance: IL-8 (12.2%), MCP-1 (11.6%), HSP70 (11.6%), hyaluronan (11.5%), M-CSF (11.5%), and IL-6 (11.5%); combinations of 2 biomarkers yielded AUC values of 1.00 (95% CI: 1.00-1.00; p < 0.001). Specific biomarkers strongly correlated with illness severity scoring, as well as other clinical variables. IL-3 specifically distinguished bacterial versus viral infection (p < 0.005). CONCLUSIONS: Specific inflammatory biomarkers were identified as markers of pediatric sepsis and strongly correlated to both clinical variables and sepsis severity.

14.
Front Cell Dev Biol ; 12: 1279932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434619

RESUMEN

Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-ß1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling.

15.
Toxicol Sci ; 201(1): 145-157, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897660

RESUMEN

Proarrhythmic cardiotoxicity remains a substantial barrier to drug development as well as a major global health challenge. In vitro human pluripotent stem cell-based new approach methodologies have been increasingly proposed and employed as alternatives to existing in vitro and in vivo models that do not accurately recapitulate human cardiac electrophysiology or cardiotoxicity risk. In this study, we expanded the capacity of our previously established 3D human cardiac microtissue model to perform quantitative risk assessment by combining it with a physiologically based pharmacokinetic model, allowing a direct comparison of potentially harmful concentrations predicted in vitro to in vivo therapeutic levels. This approach enabled the measurement of concentration responses and margins of exposure for 2 physiologically relevant metrics of proarrhythmic risk (i.e. action potential duration and triangulation assessed by optical mapping) across concentrations spanning 3 orders of magnitude. The combination of both metrics enabled accurate proarrhythmic risk assessment of 4 compounds with a range of known proarrhythmic risk profiles (i.e. quinidine, cisapride, ranolazine, and verapamil) and demonstrated close agreement with their known clinical effects. Action potential triangulation was found to be a more sensitive metric for predicting proarrhythmic risk associated with the primary mechanism of concern for pharmaceutical-induced fatal ventricular arrhythmias, delayed cardiac repolarization due to inhibition of the rapid delayed rectifier potassium channel, or hERG channel. This study advances human-induced pluripotent stem cell-based 3D cardiac tissue models as new approach methodologies that enable in vitro proarrhythmic risk assessment with high precision of quantitative metrics for understanding clinically relevant cardiotoxicity.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Medición de Riesgo , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Potenciales de Acción/efectos de los fármacos , Cardiotoxicidad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Modelos Biológicos
16.
ALTEX ; 40(1): 103-116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35648122

RESUMEN

Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.


Asunto(s)
Cardiotoxicidad , Células Madre Pluripotentes Inducidas , Humanos , Pruebas de Toxicidad/métodos , Miocitos Cardíacos , Preparaciones Farmacéuticas
17.
Sci Rep ; 13(1): 21210, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040779

RESUMEN

Acute and chronic kidney disease continues to confer significant morbidity and mortality in the clinical setting. Despite high prevalence of these conditions, few validated biomarkers exist to predict kidney dysfunction. In this study, we utilized a novel kidney multiplex panel to measure 21 proteins in plasma and urine to characterize the spectrum of biomarker profiles in kidney disease. Blood and urine samples were obtained from age-/sex-matched healthy control subjects (HC), critically-ill COVID-19 patients with acute kidney injury (AKI), and patients with chronic or end-stage kidney disease (CKD/ESKD). Biomarkers were measured with a kidney multiplex panel, and results analyzed with conventional statistics and machine learning. Correlations were examined between biomarkers and patient clinical and laboratory variables. Median AKI subject age was 65.5 (IQR 58.5-73.0) and median CKD/ESKD age was 65.0 (IQR 50.0-71.5). Of the CKD/ESKD patients, 76.1% were on hemodialysis, 14.3% of patients had kidney transplant, and 9.5% had CKD without kidney replacement therapy. In plasma, 19 proteins were significantly different in titer between the HC versus AKI versus CKD/ESKD groups, while NAG and RBP4 were unchanged. TIMP-1 (PPV 1.0, NPV 1.0), best distinguished AKI from HC, and TFF3 (PPV 0.99, NPV 0.89) best distinguished CKD/ESKD from HC. In urine, 18 proteins were significantly different between groups except Calbindin, Osteopontin and TIMP-1. Osteoactivin (PPV 0.95, NPV 0.95) best distinguished AKI from HC, and ß2-microglobulin (PPV 0.96, NPV 0.78) best distinguished CKD/ESKD from HC. A variety of correlations were noted between patient variables and either plasma or urine biomarkers. Using a novel kidney multiplex biomarker panel, together with conventional statistics and machine learning, we identified unique biomarker profiles in the plasma and urine of patients with AKI and CKD/ESKD. We demonstrated correlations between biomarker profiles and patient clinical variables. Our exploratory study provides biomarker data for future hypothesis driven research on kidney disease.


Asunto(s)
Lesión Renal Aguda , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Inhibidor Tisular de Metaloproteinasa-1 , Fallo Renal Crónico/terapia , Biomarcadores , Proteínas Plasmáticas de Unión al Retinol
18.
PLoS One ; 18(2): e0280406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745602

RESUMEN

Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr (maximum rate change of repolarization), and AP triangulation (APDtri = APDmxr-APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellent in vitro cardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds.


Asunto(s)
Potenciales de Acción , Cardiotoxicidad , Células Madre Pluripotentes Inducidas , Humanos , Potenciales de Acción/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Canales Iónicos , Miocitos Cardíacos/fisiología
19.
Bioengineering (Basel) ; 10(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37237658

RESUMEN

Despite the overwhelming use of cellularized therapeutics in cardiac regenerative engineering, approaches to biomanufacture engineered cardiac tissues (ECTs) at clinical scale remain limited. This study aims to evaluate the impact of critical biomanufacturing decisions-namely cell dose, hydrogel composition, and size-on ECT formation and function-through the lens of clinical translation. ECTs were fabricated by mixing human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and human cardiac fibroblasts into a collagen hydrogel to engineer meso-(3 × 9 mm), macro- (8 × 12 mm), and mega-ECTs (65 × 75 mm). Meso-ECTs exhibited a hiPSC-CM dose-dependent response in structure and mechanics, with high-density ECTs displaying reduced elastic modulus, collagen organization, prestrain development, and active stress generation. Scaling up, cell-dense macro-ECTs were able to follow point stimulation pacing without arrhythmogenesis. Finally, we successfully fabricated a mega-ECT at clinical scale containing 1 billion hiPSC-CMs for implantation in a swine model of chronic myocardial ischemia to demonstrate the technical feasibility of biomanufacturing, surgical implantation, and engraftment. Through this iterative process, we define the impact of manufacturing variables on ECT formation and function as well as identify challenges that must still be overcome to successfully accelerate ECT clinical translation.

20.
Heliyon ; 9(1): e12704, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36594041

RESUMEN

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity. Wave-1 patients developed increasing neutralizing antibodies to all variants, as did patients during Wave-3. Wave-3 patients, when compared to Wave-1, developed more robust antibody responses, particularly for wild-type, alpha, beta and delta variants. Within Wave-3, neutralizing antibodies were significantly less to beta and gamma VOCs, as compared to wild-type, alpha and delta. Patients previously diagnosed with cancer or chronic obstructive pulmonary disease had significantly fewer neutralizing antibodies. Naturally infected ICU patients developed adaptive responses to all VOCs, with greater responses in those patients more likely to be infected with the alpha variant, versus wild-type.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA