Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Reproduction ; 155(3): 273-282, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29339453

RESUMEN

Progesterone receptor membrane component-1 (PGRMC1) is a highly conserved multifunctional protein that is found in numerous systems, including reproductive system. Interestingly, PGRMC1 is expressed at several intracellular locations, including the nucleolus. The aim of this study is to investigate the functional relationship between PGRMC1 and nucleolus. Immunofluorescence experiments confirmed PGRMC1's nucleolar localization in cultured bovine granulosa cells (bGC) and oocytes. Additional experiments conducted on bGC revealed that PGRMC1 co-localizes with nucleolin (NCL), a major nucleolar protein. Furthermore, small interfering RNA (RNAi)-mediated gene silencing experiments showed that when PGRMC1 expression was depleted, NCL translocated from the nucleolus to the nucleoplasm. Similarly, oxidative stress induced by hydrogen peroxide (H2O2) treatment, reduced PGRMC1 immunofluorescent signal in the nucleolus and increased NCL nucleoplasmic signal, when compared to non-treated cells. Although PGRMC1 influenced NCL localization, a direct interaction between these two proteins was not detected using in situ proximity ligation assay. This suggests the involvement of additional molecules in mediating the co-localization of PGRMC1 and nucleolin. Since nucleolin translocates into the nucleoplasm in response to various cellular stressors, PGRMC1's ability to regulate its localization within the nucleolus is likely an important component of mechanism by which cells response to stress. This concept is consistent with PGRMC1's well-described ability to promote ovarian cell survival and provides a rationale for future studies on PGRMC1, NCL and the molecular mechanism by which these two proteins protect against the adverse effect of cellular stressors, including oxidative stress.


Asunto(s)
Nucléolo Celular/metabolismo , Células de la Granulosa/metabolismo , Oocitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Progesterona/metabolismo , Animales , Bovinos , Femenino , Células de la Granulosa/citología , Oocitos/citología , Nucleolina
2.
Res Vet Sci ; 132: 101-107, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32544632

RESUMEN

Canine mammary tumors (CMT) represent the most common neoplasms in female dogs and their diagnosis and classification relies on histopathological examination. Recently, PGRMC1 has been considered to be a putative biomarker for diagnosis and prognosis in many human cancers as it is expressed in a wide variety of tumors. This study represents the first description of PGRMC1 expression in CMT. PGRMC1 expression was initially assessed by immunohistochemistry in healthy or hyperplastic tissues and in four major histopathological types of CMT: simple and complex adenomas and carcinomas. PGRMC1 staining was represented by a scoring system that considered the percentage of positive cells and staining intensity. PGRMC1 expression was defined as either weak, moderate or strong. In healthy and hyperplastic tissues almost 100% of the epithelial cells stained intensely for PGRMC1. Adenomas showed similar features but with a more variable intensity. In tubular areas of adenocarcinomas, a lower percentage of epithelial cells (30-60%) stained for PGRMC1 with a weak intensity. Both the percentage of cells and intensity of PGRMC1 staining became progressively negative in the solid parts of the tumor. Western blot analysis of healthy and neoplastic mammary tissue (carcinomas samples) revealed the presence of the 25 kDa PGRMC1 band in both types of tissue, while the 50 kDa form was mainly detected in the healthy counterpart. This study reveals that PGRMC1 is expressed in CMT and its expression pattern changes depending on the pattern of growth of CMT. Further studies are now needed to determine PGRMC1's putative role and usefulness for typing and prognosis of different CMT subtypes.


Asunto(s)
Adenoma/veterinaria , Carcinoma/veterinaria , Enfermedades de los Perros/genética , Expresión Génica , Neoplasias Mamarias Animales/genética , Receptores de Progesterona/genética , Adenoma/genética , Adenoma/metabolismo , Animales , Carcinoma/genética , Carcinoma/metabolismo , Enfermedades de los Perros/metabolismo , Perros , Femenino , Neoplasias Mamarias Animales/metabolismo , Receptores de Progesterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA