Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387400

RESUMEN

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
2.
Biochem Pharmacol ; 222: 116097, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428827

RESUMEN

OBJECTIVES: Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS: We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS: Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION: This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.


Asunto(s)
Naftalenos , PPAR gamma , Neoplasias de la Próstata , Masculino , Humanos , PPAR gamma/metabolismo , Células PC-3 , Neoplasias de la Próstata/metabolismo , Apoptosis , Proliferación Celular , Lípidos , Línea Celular Tumoral
3.
PLoS One ; 19(7): e0306239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046961

RESUMEN

Quadruplex-Duplex (Q-D) junctions are unique structural motifs garnering increasing interest as drug targets, due to their frequent occurrence in genomic sequences. The viral HIV LTR-III sequence was chosen as a Q-D junction model to study the affinity of the selected compounds BMH-21, namitecan (ST-1968), and doxorubicin (DOXO), all containing a planar polycyclic aromatic moiety, linked to either one short aminoalkyl or an aminoglycosyl group. A multidisciplinary approach that combines NMR spectroscopy, molecular modelling, circular dichroism (CD) and fluorescence spectroscopy was employed. The studied ligands induced moderate but clear stabilization to the Q-D junction by interacting with the interfacial tetrad. DOXO was found to be the best Q-D junction binder. Interestingly, the removal of the aminoglycosyl group significantly changed the pattern of the interactions, indicating that highly polar substituents have a stronger affinity with the exposed regions of the Q-D junction, particularly at the level of the interfacial tetrad.


Asunto(s)
Doxorrubicina , G-Cuádruplex , Doxorrubicina/química , Duplicado del Terminal Largo de VIH/genética , Dicroismo Circular , Camptotecina/química , Camptotecina/análogos & derivados , Modelos Moleculares , Humanos , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA