Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(14): 140502, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476496

RESUMEN

In the context of ground states of quantum many-body systems, the locality of entanglement between connected regions of space is directly tied to the locality of the corresponding entanglement Hamiltonian: the latter is dominated by local, few-body terms. In this work, we introduce the negativity Hamiltonian as the (non-Hermitian) effective Hamiltonian operator describing the logarithm of the partial transpose of a many-body system. This allows us to address the connection between entanglement and operator locality beyond the paradigm of bipartite pure systems. As a first step in this direction, we study the structure of the negativity Hamiltonian for fermionic conformal field theories and a free-fermion chain: in both cases, we show that the negativity Hamiltonian assumes a quasilocal functional form, that is captured by simple functional relations.

2.
Nature ; 534(7608): 516-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27337339

RESUMEN

Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

3.
Phys Rev Lett ; 127(12): 126603, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597060

RESUMEN

We study the impact of quenched disorder on the dynamics of locally constrained quantum spin chains, that describe 1D arrays of Rydberg atoms in both the frozen (Ising-type) and dressed (XY-type) regime. Performing large-scale numerical experiments, we observe no trace of many-body localization even at large disorder. Analyzing the role of quenched disorder terms in constrained systems we show that they act in two, distinct and competing ways: as an on-site disorder term for the basic excitations of the system, and as an interaction between excitations. The two contributions are of the same order, and as they compete (one towards localization, the other against it), one does never enter a truly strong disorder, weak interaction limit, where many-body localization occurs. Such a mechanism is further clarified in the case of XY-type constrained models: there, a term which would represent a bona fide local quenched disorder term acting on the excitations of the clean model must be written as a series of nonlocal terms in the unconstrained variables. Our observations provide a simple picture to interpret the role of quenched disorder that could be immediately extended to other constrained models or quenched gauge theories.

4.
Phys Rev Lett ; 127(17): 170501, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34739272

RESUMEN

Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.

5.
Phys Rev Lett ; 125(20): 200501, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258654

RESUMEN

We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].

6.
Phys Rev Lett ; 120(3): 030601, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400521

RESUMEN

We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters-in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.

7.
Nature ; 466(7306): 597-600, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20671704

RESUMEN

Quantum many-body systems can have phase transitions even at zero temperature; fluctuations arising from Heisenberg's uncertainty principle, as opposed to thermal effects, drive the system from one phase to another. Typically, during the transition the relative strength of two competing terms in the system's Hamiltonian changes across a finite critical value. A well-known example is the Mott-Hubbard quantum phase transition from a superfluid to an insulating phase, which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry, a novel type of quantum phase transition may be induced and driven by an arbitrarily weak perturbation to the Hamiltonian. Here we observe such an effect--the sine-Gordon quantum phase transition from a superfluid Luttinger liquid to a Mott insulator--in a one-dimensional quantum gas of bosonic caesium atoms with tunable interactions. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sine-Gordon model. We trace the phase boundary all the way to the weakly interacting regime, where we find good agreement with the predictions of the one-dimensional Bose-Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality and transport phenomena beyond Hubbard-type models in the context of ultracold gases.

8.
Phys Rev Lett ; 114(17): 173002, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978228

RESUMEN

We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments.

9.
Phys Rev E ; 109(3-1): 034102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632805

RESUMEN

Topology plays a fundamental role in our understanding of many-body physics, from vortices and solitons in classical field theory to phases and excitations in quantum matter. Topological phenomena are intimately connected to the distribution of information content that, differently from ordinary matter, is now governed by nonlocal degrees of freedom. However, a precise characterization of how topological effects govern the complexity of a many-body state, i.e., its partition function, is presently unclear. In this paper, we show how topology and complexity are directly intertwined concepts in the context of classical statistical mechanics. We concretely present a theory that shows how the Kolmogorov complexity of a classical partition function sampling carries unique, distinctive features depending on the presence of topological excitations in the system. We confront two-dimensional Ising, Heisenberg, and XY models on several topologies and study the corresponding samplings as high-dimensional manifolds in configuration space, quantifying their complexity via the intrinsic dimension. While for the Ising and Heisenberg models the intrinsic dimension is independent of the real-space topology, for the XY model it depends crucially on temperature: across the Berezkinskii-Kosterlitz-Thouless (BKT) transition, complexity becomes topology dependent. In the BKT phase, it displays a characteristic dependence on the homology of the real-space manifold, and, for g-torii, it follows a scaling that is solely genus dependent. We argue that this behavior is intimately connected to the emergence of an order parameter in data space, the conditional connectivity, which displays scaling behavior. Our approach paves the way for an understanding of topological phenomena emergent from many-body interactions from the perspective of Kolmogorov complexity.

10.
Phys Rev E ; 109(5-1): 054305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907445

RESUMEN

Network science provides very powerful tools for extracting information from interacting data. Although recently the unsupervised detection of phases of matter using machine learning has raised significant interest, the full prediction power of network science has not yet been systematically explored in this context. Here we fill this gap by providing an in-depth statistical, combinatorial, geometrical, and topological characterization of 2D Ising snapshot networks (IsingNets) extracted from Monte Carlo simulations of the 2D Ising model at different temperatures, going across the phase transition. Our analysis reveals the complex organization properties of IsingNets in both the ferromagnetic and paramagnetic phases and demonstrates the significant deviations of the IsingNets with respect to randomized null models. In particular percolation properties of the IsingNets reflect the existence of the symmetry between configurations with opposite magnetization below the critical temperature and the very compact nature of the two emerging giant clusters revealed by our persistent homology analysis of the IsingNets. Moreover, the IsingNets display a very broad degree distribution and significant degree-degree correlations and weight-degree correlations demonstrating that they encode relevant information present in the configuration space of the 2D Ising model. The geometrical organization of the critical IsingNets is reflected in their spectral properties deviating from the one of the null model. This work reveals the important insights that network science can bring to the characterization of phases of matter. The set of tools described hereby can be applied as well to numerical and experimental data.

11.
Phys Rev Lett ; 111(16): 165302, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24182276

RESUMEN

We investigate the zero-temperature phases of bosonic and fermionic gases confined to one dimension and interacting via a class of finite-range soft-shoulder potentials (i.e., soft-core potentials with an additional hard-core onsite interaction). Using a combination of analytical and numerical methods, we demonstrate the stabilization of critical quantum liquids with qualitatively new features with respect to the Tomonaga-Luttinger liquid paradigm. These features result from frustration and cluster formation in the corresponding classical ground state. Characteristic signatures of these liquids are accessible in state-of-the-art experimental setups with Rydberg-dressed ground-state atoms trapped in optical lattices.

12.
Phys Rev Lett ; 111(17): 173004, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24206486

RESUMEN

We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

13.
Phys Rev E ; 108(4-1): 044128, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978657

RESUMEN

We study the Hamiltonian dynamics of a many-body quantum system subjected to periodic projective measurements, which leads to probabilistic cellular automata dynamics. Given a sequence of measured values, we characterize their dynamics by performing a principal component analysis (PCA). The number of principal components required for an almost complete description of the system, which is a measure of complexity we refer to as PCA complexity, is studied as a function of the Hamiltonian parameters and measurement intervals. We consider different Hamiltonians that describe interacting, noninteracting, integrable, and nonintegrable systems, including random local Hamiltonians and translational invariant random local Hamiltonians. In all these scenarios, we find that the PCA complexity grows rapidly in time before approaching a plateau. The dynamics of the PCA complexity can vary quantitatively and qualitatively as a function of the Hamiltonian parameters and measurement protocol. Importantly, the dynamics of PCA complexity present behavior that is considerably less sensitive to the specific system parameters for models which lack simple local dynamics, as is often the case in nonintegrable models. In particular, we point out a figure of merit that considers the local dynamics and the measurement direction to predict the sensitivity of the PCA complexity dynamics to the system parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA