Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 34(6): 710-21, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19560423

RESUMEN

We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.


Asunto(s)
Disparidad de Par Base , ARN Polimerasa II/fisiología , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo , Nucleótidos de Uracilo/química , Nucleótidos de Uracilo/metabolismo
2.
Nucleic Acids Res ; 38(12): 4040-51, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20197319

RESUMEN

Spt5 is the only known RNA polymerase-associated factor that is conserved in all three domains of life. We have solved the structure of the Methanococcus jannaschii Spt4/5 complex by X-ray crystallography, and characterized its function and interaction with the archaeal RNAP in a wholly recombinant in vitro transcription system. Archaeal Spt4 and Spt5 form a stable complex that associates with RNAP independently of the DNA-RNA scaffold of the elongation complex. The association of Spt4/5 with RNAP results in a stimulation of transcription processivity, both in the absence and the presence of the non-template strand. A domain deletion analysis reveals the molecular anatomy of Spt4/5--the Spt5 Nus-G N-terminal (NGN) domain is the effector domain of the complex that both mediates the interaction with RNAP and is essential for its elongation activity. Using a mutagenesis approach, we have identified a hydrophobic pocket on the Spt5 NGN domain as binding site for RNAP, and reciprocally the RNAP clamp coiled-coil motif as binding site for Spt4/5.


Asunto(s)
Proteínas Arqueales/química , Proteínas Cromosómicas no Histona/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Sitios de Unión , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Methanococcus , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Factores de Elongación Transcripcional/metabolismo
3.
J Biol Chem ; 284(46): 31658-63, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19758983

RESUMEN

Structure-function analysis has revealed the mechanism of yeast RNA polymerase II transcription at 8-oxoguanine (8-oxoG), the major DNA lesion resulting from oxidative stress. When polymerase II encounters 8-oxoG in the DNA template strand, it can misincorporate adenine, which forms a Hoogsteen bp with 8-oxoG at the active center. This requires rotation of the 8-oxoG base from the standard anti- to an uncommon syn-conformation, which likely occurs during 8-oxoG loading into the active site. The misincorporated adenine escapes intrinsic proofreading, resulting in transcriptional mutagenesis that is observed directly by mass spectrometric RNA analysis.


Asunto(s)
ADN de Hongos/genética , Guanina/análogos & derivados , Mutagénesis , ARN Polimerasa II/genética , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Adenina/metabolismo , Cristalografía por Rayos X , Guanina/química , Guanina/metabolismo , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología
4.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 2): 112-20, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19171965

RESUMEN

RNA polymerase II (Pol II) is the eukaryotic enzyme that is responsible for transcribing all protein-coding genes into messenger RNA (mRNA). The mRNA-transcription cycle can be divided into three stages: initiation, elongation and termination. During elongation, Pol II moves along a DNA template and synthesizes a complementary RNA chain in a processive manner. X-ray structural analysis has proved to be a potent tool for elucidating the mechanism of Pol II elongation. Crystallographic snapshots of different functional states of the Pol II elongation complex (EC) have elucidated mechanistic details of nucleotide addition and Pol II translocation. Further structural studies in combination with in vitro transcription experiments led to a mechanistic understanding of various additional features of the EC, including its inhibition by the fungal toxin alpha-amanitin, the tunability of the active site by the elongation factor TFIIS, the recognition of DNA lesions and the use of RNA as a template.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , ADN/genética , Modelos Biológicos , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN/genética , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Transcripción Genética/genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
5.
Biochem J ; 413(1): 175-83, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18352858

RESUMEN

ChitO (chito-oligosaccharide oxidase) from Fusarium graminearum catalyses the regioselective oxidation of N-acetylated oligosaccharides. The enzyme harbours an FAD cofactor that is covalently attached to His94 and Cys154. The functional role of this unusual bi-covalent flavin-protein linkage was studied by site-directed mutagenesis. The double mutant (H94A/C154A) was not expressed, which suggests that a covalent flavin-protein bond is needed for protein stability. The single mutants H94A and C154A were expressed as FAD-containing enzymes in which one of the covalent FAD-protein bonds was disrupted relative to the wild-type enzyme. Both mutants were poorly active, as the k(cat) decreased (8.3- and 3-fold respectively) and the K(m) increased drastically (34- and 75-fold respectively) when using GlcNac as the substrate. Pre-steady-state analysis revealed that the rate of reduction in the mutant enzymes is decreased by 3 orders of magnitude when compared with wild-type ChitO (k(red)=750 s(-1)) and thereby limits the turnover rate. Spectroelectrochemical titrations revealed that wild-type ChitO exhibits a relatively high redox potential (+131 mV) and the C154A mutant displays a lower potential (+70 mV), while the H94A mutant displays a relatively high potential of approximately +164 mV. The results show that a high redox potential is not the only prerequisite to ensure efficient catalysis and that removal of either of the covalent bonds may perturb the geometry of the Michaelis complex. Besides tuning the redox properties, the bi-covalent binding of the FAD cofactor in ChitO is essential for a catalytically competent conformation of the active site.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Quitina/metabolismo , Flavinas/metabolismo , Fusarium/enzimología , Secuencia de Aminoácidos , Deshidrogenasas de Carbohidratos/química , Regulación Fúngica de la Expresión Génica/fisiología , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción
6.
Nat Struct Mol Biol ; 14(12): 1127-33, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17994106

RESUMEN

The anticancer drug cisplatin forms 1,2-d(GpG) DNA intrastrand cross-links (cisplatin lesions) that stall RNA polymerase II (Pol II) and trigger transcription-coupled DNA repair. Here we present a structure-function analysis of Pol II stalling at a cisplatin lesion in the DNA template. Pol II stalling results from a translocation barrier that prevents delivery of the lesion to the active site. AMP misincorporation occurs at the barrier and also at an abasic site, suggesting that it arises from nontemplated synthesis according to an 'A-rule' known for DNA polymerases. Pol II can bypass a cisplatin lesion that is artificially placed beyond the translocation barrier, even in the presence of a G.A mismatch. Thus, the barrier prevents transcriptional mutagenesis. The stalling mechanism differs from that of Pol II stalling at a photolesion, which involves delivery of the lesion to the active site and lesion-templated misincorporation that blocks transcription.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Daño del ADN , ADN/efectos de los fármacos , Transcripción Genética , Sitios de Unión , Cromatografía en Gel , Cristalografía , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA