Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomacromolecules ; 24(1): 426-438, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36574619

RESUMEN

Acellular dermal matrix (ADM) can be used as collagen-based biological patches for regeneration and repair of soft tissues in vivo. However, the problems of calcification and infection during treatment with patches can lead to premature patch failure and even to a severely increased risk of recurrence. In this study, first, porcine ADM (pADM) grafted with vinyl underwent an in situ cross-linking reaction in the presence of an initiator, while quaternary ammonium groups were introduced into the pADM during the cross-linking process to obtain MA-DMC-pADM, which is a biological patch with anti-infection and anti-calcification properties. The results of physicochemical property tests of the material showed that the pADM after cross-linking had better physical and mechanical properties. Importantly, antibacterial and anti-calcification experiments showed that MA-DMC-pADM had a good antibacterial and anti-calcification effect. Therefore, the MA-DMC-pADM biological patch facilitates their longer-lasting effectiveness, allowing pADM to be used in a wider range of applications.


Asunto(s)
Dermis Acelular , Colágeno , Porcinos , Animales , Antibacterianos/farmacología
2.
Biomacromolecules ; 24(5): 2342-2355, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37094104

RESUMEN

Ideal tissue-engineered skin scaffolds should possess integrated therapeutic effects and multifunctionality, such as broad-spectrum antibacterial properties, adjustable mechanical properties, and bionic structure. Acellular dermal matrix (ADM) has been broadly used in many surgical applications as an alternative treatment to the "gold standard" tissue transplantation. However, insufficient broad-spectrum antibacterial and mechanical properties for therapeutic efficacy limit the practical clinical applications of ADM. Herein, a balanceable crosslinking approach based on oxidized 2-hydroxypropyltrimethyl ammonium chloride chitosan (OHTCC) was developed for converting ADM into on-demand versatile skin scaffolds for integrated infected wounds therapy. Comprehensive experiments show that different oxidation degrees of OHTCC have significative influences on the specific origins of OHTCC-crosslinked ADM scaffolds (OHTCC-ADM). OHTCC with an oxidation degree of about 13% could prosperously balance the physiochemical properties, antibacterial functionality, and cytocompatibility of the OHTCC-ADM scaffolds. Owing to the natural features and comprehensive crosslinking effects, the proposed OHTCC-ADM scaffolds possessed the desirable multifunctional properties, including adjustable mechanical, degradable characteristics, and thermal stability. In vitro/in vivo biostudies indicated that OHTCC-ADM scaffolds own well-pleasing broad-spectrum antibacterial performances and play effectively therapeutic roles in treating infection, inhibiting inflammation, promoting angiogenesis, and promoting collagen deposition to enhance the infected wound healing. This study proposes a facile balanceable crosslinking approach for the design of ADM-based versatile skin scaffolds for integrated infected wounds therapy.


Asunto(s)
Dermis Acelular , Piel Artificial , Cicatrización de Heridas , Colágeno , Andamios del Tejido
3.
Biomacromolecules ; 24(3): 1483-1496, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36802497

RESUMEN

The repair of wound damage has been a common problem in clinic for a long time. Inspired by the electroactive nature of tissues and the electrical stimulation of wounds in clinical practice, the next generation of wound therapy with self-powered electrical stimulator is expected to achieve the desired therapeutic effect. In this work, a two-layered self-powered electrical-stimulator-based wound dressing (SEWD) was designed through the on-demand integration of the bionic tree-like piezoelectric nanofiber and the adhesive hydrogel with biomimetic electrical activity. SEWD has good mechanical properties, adhesion properties, self-powered properties, high sensitivity, and biocompatibility. The interface between the two layers was well integrated and relatively independent. Herein, the piezoelectric nanofibers were prepared by P(VDF-TrFE) electrospinning, and the morphology of the nanofibers was controlled by adjusting the electrical conductivity of the electrospinning solution. Benefiting from its bionic dendritic structure, the prepared piezoelectric nanofibers had better mechanical properties and piezoelectric sensitivity than native P(VDF-TrFE) nanofibers, which can convert tiny forces into electrical signals as a power source for tissue repair. At the same time, the designed conductive adhesive hydrogel was inspired by the adhesive properties of natural mussels and the redox electron pairs formed by catechol and metal ions. It has bionic electrical activity matching with the tissue and can conduct the electrical signal generated by the piezoelectric effect to the wound site so as to facilitate the electrical stimulation treatment of tissue repair. In addition, in vitro and in vivo experiments demonstrated that SEWD converts mechanical energy into electricity to stimulate cell proliferation and wound healing. The proposed healing strategy for the effective treatment of skin injury was provided by developing self-powered wound dressing, which is of great significance to the rapid, safe, and effective promotion of wound healing.


Asunto(s)
Vendajes , Biomimética , Adhesivos , Cicatrización de Heridas , Hidrogeles/química
4.
J Colloid Interface Sci ; 674: 1004-1018, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964000

RESUMEN

Low mechanical strength is still the key question for collagen hydrogel consisting of nanofibrils as hard tissue repair scaffolds with no loss of biological function. In this work, novel collagen nanofibrous hydrogels with high mechanical strength were fabricated based on the pre-protection of trisodium citrate masked Zr(SO4)2 solution for collagen self-assembling nanofibrils and then further coordination with Zr(SO4)2 solution. The mature collagen nanofibrils with d-period were observed in Zr(IV) mediated collagen hydrogels by AFM when the Zr(IV) concentration was ≥ 10 mmol/L, and the distribution of zirconium element was uniform. Due to the coordination of Zr(IV) with ─COOH, ─NH2 and ─OH within collagen and the tighter entanglement of collagen nanofibrils, the elastic modulus and compressive strength of Zr(IV) mediated collagen nanofibrous hydrogel were 208.3 and 1103.0 kPa, which were approximate 77 and 12 times larger than those of pure collagen hydrogel, respectively. Moreover, the environmental stability such as thermostability, swelling ability and biodegradability got outstanding improvements and could be regulated by Zr(IV) concentration. Most importantly, the resultant hydrogel showed excellent biocompatibility and even accelerated cell proliferation.


Asunto(s)
Proliferación Celular , Colágeno , Hidrogeles , Nanofibras , Circonio , Hidrogeles/química , Circonio/química , Nanofibras/química , Colágeno/química , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Ratones , Tamaño de la Partícula , Fuerza Compresiva , Propiedades de Superficie
5.
J Mater Chem B ; 10(21): 4070-4082, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35521678

RESUMEN

As a feasible solution to massive blood loss in emergencies, ensuring the availability of absorbable exogenous topical hemostatic materials is a major current focus. Among the available materials, collagen is a surprising presence, but that does not mean that it is an ideal material from every aspect. Collagen fibers (CFs) and collagen have the same composition in terms of matter, but they have differing spatial structures and hierarchies. CFs can be directly seen as a slight advance on collagen, yet disadvantages relating to their mono-functionality and dosage form restrict their further utilization. It is worth noting that technology for extracting Bletilla striata polysaccharide (BSP), a natural derivative of Bletilla striata, is becoming more advanced. Based on extensive surveys and development studies, hydrogels can show extraordinary development flexibility. In particular, when it comes to wound adaptability and stimuli responsiveness, in situ gels show many advantages. Therefore, we introduced a collagen-based biocompatible and efficient thermosensitive hemostatic hydrogel material (COF). COF is a stable, safe, and bioactive material, and multiple characterization tests confirm this. Upon adjusting the ratios of different materials, COF-3, showing the most comprehensive performance, best in vitro hemostatic effects, good gelation speed, and good cell compatibility, was selected. COF-3 was applied during the in vivo hemostasis testing of a rat hemorrhage model, and COF-3 achieved hemostasis within 30 s. COF shows promising application and clinical potential, providing an effective route to the achievement of in vivo minimally invasive hemostasis and laying a solid foundation for the development of functional hemostatic gels.


Asunto(s)
Hemostáticos , Animales , Colágeno/farmacología , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico , Hemostasis , Hemostáticos/química , Hemostáticos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratas
6.
RSC Adv ; 12(11): 6811-6820, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35424614

RESUMEN

The anticoagulant properties of valve materials are essential to maintain blood patency after artificial valve implantation. Porcine acellular dermal matrix (pADM) has low immunogenicity, good biocompatibility, and can reduce calcification by eliminating heterogeneous cells. However, its main component is collagen, which has strong coagulation function and poor anticoagulant activity. When used in heart valve materials, it can easily coagulate and form a life-threatening thrombus. Therefore, it is necessary to improve its anticoagulant performance. The glutaraldehyde (GA) cross-linked valves widely used clinically are easy to calcify with poor anticoagulant performance and cytotoxicity. In this study, dialdehyde heparin containing cross-linking active aldehyde groups was prepared by sodium periodate oxidation, then it was used for crosslinking with pADM to chemically modify its anticoagulant performance. Compared with GA cross-linked pADM (GA-pA), dialdehyde heparin cross-linked pADM (OL-pA) has better thermal stability and biocompatibility, especially its anticoagulant and antiplatelet adhesion were significantly improved, which can reduce the incidence of coagulation, thrombocytopenia and bleeding. In summary, dialdehyde heparin is expected to be applied to modify the anticoagulant properties of pADM and has great potential for the preparation and clinical application of anticoagulant materials such as heart valves and artificial blood vessels.

7.
Int J Biol Macromol ; 209(Pt B): 1695-1702, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489627

RESUMEN

Biological patch is a kind of tissue substitute material derived from natural polymer materials for the repair of human soft tissue defects. The serious calcification of biological patch after implantation is one of the reasons for the decline and failure of patch. In previous studies, we synthesized a new biomaterial crosslinker epoxidized chitosan quaternary ammonium salt (EHTCC) and used it for the crosslinking of porcine acellular dermal matrix (pADM). The prepared EHTCC-pADM had good mechanical properties, biocompatibility and healing promoting properties. In order to broaden its application scenarios, the related properties of EHTCC-pADM as implant patch were further explored in this study. The results of X-ray diffraction (XRD) measurements showed that the structure of pADM did not change much before and after the crosslinking of EHTCC, which was conducive to the maintenance of the excellent biological properties of pADM. According to the enzymatic degradation resistance test in vitro, the resistance of EHTCC-pADM to type I collagenase degradation was significantly improved compared with non -crosslinked pADM. And with the increase of the amount of EHTCC, its degradation resistance was stronger. The experimental results showed that EHTCC-pADM can well support the growth of L929 fibroblasts and has good anti-calcification properties in vitro and in vivo.


Asunto(s)
Dermis Acelular , Calcinosis , Dermis Acelular/metabolismo , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Calcificación Fisiológica , Calcinosis/metabolismo , Colágeno/metabolismo , Polisacáridos/metabolismo , Porcinos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120748, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34952439

RESUMEN

A simple and portable colorimetric sensor for colorimetric detection of UO22+ in aqueous solution based on vinylphosphonic acid functionalized gold nanoparticles (VPA-AuNPs) has been developed. The VPA-AuNPs solution was prepared by sodium borohydride reduction in the presence of vinylphosphonic acid. The addition of UO22+ would induce aggregation of VPA-AuNPs, resulting in the color change from wine-red to blue, and red-shift of the ultraviolet-visible (UV-vis) spectra. The UO22+ assay based on VPA-AuNPs showed good selectivity and sensitivity, with a limit of detection to be approximately 2.0 µM by naked eyes and 1.07 µM by UV-vis (S/N = 3) respectively. Additionally, a smartphone with a free application named "PhotoMetrix" was employed to estimate the color intensities (red, green, blue value) of VPA-AuNPs in the presence of UO22+ with different concentrations, and the concentration of UO22+ samples could be conveniently exported by the calculated univariate calibration curves. This method shows good feasibility for on-site UO22+ detection in an aqueous solution.


Asunto(s)
Oro , Nanopartículas del Metal , Colorimetría , Iones , Organofosfonatos , Teléfono Inteligente , Compuestos de Vinilo , Agua
9.
ACS Biomater Sci Eng ; 8(8): 3411-3423, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35773184

RESUMEN

Skin wound healing is a complex process with multiple growth factors and cytokines participating and regulating each other. It is essential to develop novel wound dressings to accelerate the wound healing process. In this study, we developed the heparinized collagen scaffold materials (OL-pA), and the cross-linking reaction was based on the Schiff base reaction between pig acellular dermal matrix (pADM) and dialdehyde low molecular weight heparin (LMWH). Compared with pADM, the OL-pA modified by cross-linking still retained the triple helix structure of native collagen. When the dosage of the OL cross-linking agent was 12 wt %, the cross-linking density of OL-pA was 49.67%, the shrinkage temperature was 75.6 °C, the tensile strength was 14.62 MPa, the elongation at break was 53.14%, and the water contact angle was 25.1°, all of which were significantly improved compared with pADM. The cytocompatibility test showed that L929 cells adhered better on the surface of OL-pA scaffolds, and the proliferation ability of primary fibroblasts was enhanced. In vivo experiments showed that the OL-pA scaffolds could better accelerate wound healing, more effectively promote the positive expression of bFGF, PDGF, and VEGF growth factors, accelerate capillary angiogenesis, and promote wound scarless healing. In summary, the OL-pA scaffolds have more excellent hygrothermal stability, mechanical properties, hydrophilicity, and cytocompatibility. Especially the scaffolds have significant pro-healing properties for the full-thickness skin wound of rats and are expected to be a potential pro-healing collagen-based wound dressing.


Asunto(s)
Cicatriz , Bases de Schiff , Animales , Vendajes , Colágeno/química , Colágeno/farmacología , Heparina de Bajo-Peso-Molecular/farmacología , Ratas , Bases de Schiff/farmacología , Porcinos , Cicatrización de Heridas
10.
Mater Today Bio ; 16: 100376, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35991626

RESUMEN

Collagen-based scaffolds lack mechanical strength, flexibility, and tunable pore structure, affecting tissue repair outcomes and restricting their wide clinical application. Here, two kinds of scaffolds were prepared by a combination of vacuum homogenization, natural air drying, water soaking, lyophilization, and crosslinking. Compared with the scaffolds made of collagen molecules (Col-M), the scaffolds made of collagen aggregates (Col-A) exhibited higher mechanical strength (ultimate tensile strength: 1.38 â€‹± â€‹0.26 â€‹MPa vs 15.46 â€‹± â€‹1.55 â€‹MPa), stronger flexibility, advanced cell adhesion, survival, and proliferation. Subcutaneous implantation in rats showed that Col-A scaffolds promoted cell infiltration, macrophage polarization, and vascularization. Furthermore, the Col-A scaffolds inhibited abdominal bulges due to their adequate mechanical support, and they also promoted vascularized muscle regeneration in a rat abdominal hernia defect model. Our study provides a novel strategy for generating high-strength, flexible, porous collagen-based scaffolds, which can be applied to tissue repair with mechanical strength requirements. It broadens their application range in the field of regenerative medicine.

11.
Int J Biol Macromol ; 216: 741-756, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908679

RESUMEN

Collagen is the most abundant protein in animals and one of the most important extracellular matrices that chronically plays an important role in biomaterials. However, the major concern about native collagen is the lack of its thermal stability and weak resistance to proteolytic degradation. Currently, a series of modification technologies have been explored for critical nature and stability enhancement in collagen matrix-based biomaterials, and prosperously large-scale progress has been achieved. The establishment of covalent bonds among collagen noumenon has been verified assuringly to have pregnant influences on its physicochemical properties and biological properties, enlightening to discuss the disparate modification technologies on specific effects on the multihierarchical structures and pivotal performances of collagen. In this review, various existing modification methods were classified from a new perspective, scilicet whether to introduce exogenous substances, to reveal the basic scientific theories of collagen modification. Understanding the role of modification technologies in the enhancement of collagen performance is crucial for developing novel collagen-based biomaterials. Moreover, the different modification effects caused by the interaction sites between the modifier and collagen, and the structure-activity relationship between the structure of the modifier and the properties of collagen were reviewed.


Asunto(s)
Materiales Biocompatibles , Colágeno , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Colágeno/química , Matriz Extracelular/metabolismo
12.
Int J Biol Macromol ; 182: 1994-2002, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062157

RESUMEN

As a biocompatible and bioactive natural tissue engineering collagen scaffold, porcine acellular dermal matrix (pADM) has limitations for the application in tissue regeneration due to its low strength and rapid biodegradation. Herein, to get a good wound dressing, the epoxy group was added to N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) to synthesize the epoxidized N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (EHTCC), and the porcine acellular dermal matrix was modified with EHTCC at different dosage of 0, 4, 8, 12, 16 and 20%. The properties of the EHTCC-pADM were evaluated. The results indicated that the thermal stability and mechanical properties of EHTCC-pADM were remarkably improved, and the natural conformation of the matrix was maintained, which was beneficial to natural and excellent biological properties of the pADM. According to the test results of water contact angle, the hydrophilicity of the material was improved, which is conducive to cell adhesion, proliferation and growth. Cytotoxicity experiments showed that the introduction of EHTCC would not adversely affect the biocompatibility of the materials. In vivo experiments showed that EHTCC-pADM could promote wound healing. In conclusion, EHTCC-pADM is a potential collagen-based dressing for wound healing.


Asunto(s)
Colágeno/farmacología , Reactivos de Enlaces Cruzados/química , Compuestos Epoxi/química , Polisacáridos/farmacología , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Dermis Acelular/metabolismo , Animales , Línea Celular , Proliferación Celular , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Masculino , Ratones , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier , Porcinos , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Des Monomers Polym ; 24(1): 293-304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602850

RESUMEN

Natural collagen has good biocompatibility and ability to promote tissue regeneration and repair, but the poor mechanical properties and intolerance of degradation of natural collagen limit its applications in the biomedical field. In this research, we synthesized a skin wound repair hydrogel with good biological activity, high strength and excellent water absorption properties. Inspired by the theory of wet healing, dopamine was introduced into the side chain of the water-absorbing polymer polyglutamic acid to synthesize a cross-linking agent (PGAD) with both water absorption and cell adhesion ablities, and then it was introduced into collagen/polyvinyl alcohol (PVA-COL) system to form a double network hydrogel. Scanning electron microscope observation of the morphological characteristics of the hydrogel showed that after the introduction of PGAD, the hydrogel formed an obvious pore structure, and the swelling rate showed that the introduction of PGAD significantly improved the water absorption rate of the hydrogel.In addition, PVA-COL-PGAD hydrogel has good mechanical properties and water absorption behavior.In vitro experimental results revealed that the hydrogel has good biocompatibility. In vivo wound healing experiments showed that hydrogel can promote wound healing process.These results indicated that our hydrogel has great potential as a medical wound dressing.

14.
ACS Omega ; 5(32): 20238-20249, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32832777

RESUMEN

Infection is a common complication in the process of wound management. An ideal wound dressing is supposed to reduce or even prevent the infection while promoting wound healing. A porcine acellular dermal matrix (pADM) has been already used as a wound dressing in clinic due to its capacity to accelerate wound healing. However, not only is pure pADM not antibacterial, its mechanical properties are poor. In this study, an antibacterial pADM with good performance was prepared by adding two natural products as modifiers, quercetin (QCT) and tea tree oil (TTO). The result of Fourier-transform infrared (FTIR) proved that the addition of modifiers did not break the natural triple-helical structure of collagen. Meanwhile, the results of differential scanning calorimetry (DSC), thermogravimetric analysis (TG), mechanic experiment, and enzymatic degradation demonstrated that pADM handled with QCT and TTO (termed QCT-TTO-pADM) had better thermal stability, mechanical strength, and resistance to enzymatic degradation than pADM. Meanwhile, QCT-TTO-pADM had excellent antibacterial activity and showed an antibacterial rate of over 80%. Furthermore, in the cytocompatibility analysis, QCT-TTO-pADM had no side effects on the adhesion, growth, and proliferation of fibroblasts. QCT-TTO-pADM could even accelerate wound healing more efficiently than pADM and glutaraldehyde-modified pADM (GA-pADM). In conclusion, QCT-TTO-pADM was a potential antibacterial wound dressing with good performance.

15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 26(5): 1010-5, 2009 Oct.
Artículo en Zh | MEDLINE | ID: mdl-19947479

RESUMEN

The growth of fibroblasts on the acellular dermal matrix (ADM) was studied. The fibroblasts isolated from the skin of an adult New Zealand Rabbit were cultured in vitro and identified subsequently. After the cells were inoculated on the ADM as seeds, the adhesion rate and the growth ability were examined, and cellular morphology was assayed with DAPI fluorescent staining and Scanning electron microscope (SEM). The possibilities of applying ADM as cells carrier or deliverer in the field of transplantation were evaluated. The result revealed that pure fibroblasts were isolated through the specific method. Skin fibroblasts could adhere to ADM easily, and the adhesion rate was 96.78%, displaying no significant difference (P > 0.05) when compared with that rate of the control holes. The cells on the scaffolds and those on the control holes showed similar growth tendencies, but the activity of the former was lower (P < 0.01). The integral nucleus with blue fluorescence could be observed on the ADM under fluorescence microscope. The number of fibroblasts scaled up with the cultured time, The results of SEM showed that the state of cell was good and the fibroblasts were fused into a layer after being cultured for 5-10d. So rabbit fibroblasts can attach, survive, grow and proliferate on the ADM in a healthy way. It is entirely possible to use ADM as an appropriate scaffold material for the culture of fibroblasts and as a material for transplantations.


Asunto(s)
Dermis/citología , Fibroblastos/citología , Piel Artificial , Piel/citología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles , Adhesión Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Conejos , Andamios del Tejido
16.
Mater Sci Eng C Mater Biol Appl ; 94: 1020-1036, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423683

RESUMEN

Not only are the physicochemical properties and biocompatibility of biomaterials important considerations, but also their antibacterial properties. In this study, a novel chemically-cross-linked antibacterial porcine acellular dermal matrix (pADM) scaffold was fabricated according to a two-step method. A naturally-derived oxidized chitosan oligosaccharide (OCOS) was used to cross-linked pADM (termed OCOS-pADM) to improve its physicochemical properties. Residual aldehyde groups within the OCOS-pADM were used in a redox reaction with Ag ions to produce Ag nanoparticles (AgNPs) in situ. As the AgNPs were tightly adhered onto the scaffold fibrils (termed OCOS-AgNPs-pADM), this effectively functionalized scaffold with antibacterial properties. The generated AgNPs were characterized by UV-Vis diffuse reflectance spectroscopy, XPS and SEM. The results of DSC, TG and enzymatic degradation demonstrated that OCOS-AgNPs-pADM possessed improved thermal stability and resistance to enzymatic degradation compared with pADM scaffolds. The kinetic experiment of the release of silver showed that silver was released in a controllable way. After introducing AgNPs into scaffolds, the OCOS-AgNPs-pADM possessed wide-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, MTT assay and CLSM showed that the scaffolds had good biocompatibility. Pieces of OCOS-AgNPs-pADM were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. And results showed that the OCOS-AgNPs-pADM could accelerate the wound healing process. Overall, this work contributes new insight into the chemical cross-linking and functionalization of pADM scaffolds. In addition, as novel antibacterial scaffolds, OCOS-AgNPs-pADMs have the potential for development as wound dressing materials.


Asunto(s)
Dermis Acelular/metabolismo , Antibacterianos/farmacología , Quitosano/química , Reactivos de Enlaces Cruzados/química , Nanopartículas del Metal/química , Oligosacáridos/química , Plata/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Rastreo Diferencial de Calorimetría , Proliferación Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Espectroscopía de Fotoelectrones , Ratas Sprague-Dawley , Espectrofotometría Ultravioleta , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Porcinos , Termogravimetría
17.
ACS Omega ; 4(27): 22292-22301, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31909312

RESUMEN

A novel clay-reinforced polycaprolactone/chitosan/curcumin (PCl/CS/Clay/Cur) composite film was fabricated in this study. The prepared Cur-loading composite films were characterized with attenuated total reflection Fourier transformed infrared spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the results showed good dispersion of clay in the composite films. The addition of nanoclay was found to significantly increase the tensile strength. Also, the clay-enhanced drug-loading films exhibited better controlled-release profiles of Cur than those membranes without clay. Skin disinfection test demonstrated that the curcumin-loaded film could protect wound from bacterial infection. Cytotoxicity analysis proved the good biocompatibility of the composite films. The clay-enhanced Cur-loading films might be promising candidates for wound care.

18.
Int J Biol Macromol ; 124: 699-707, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30502434

RESUMEN

A growth of bacterial infections and over-and inefficient release of antibiotics forces one to search new antibacterial agents and/or strategies. In this study, a novel strategy towards biocompatible and antibacterial bilayer wound dressing was proposed by a two-step spin coating method combined with in-situ crosslinking polymerization. First, through in-situ crosslinking polymerization, [2-(methacryloyloxy) ethyl] trimethylammonium chloride ([MTA][Cl]) was polymerized and crosslinked in polycaprolactone (PCL) solution and PCL/PMTA solution was obtained. Then, the PCL/PMTA solution was spinning-coated as the antibacterial top layer and the mixture of PCL and gelatin (Gel) (PCL/Gel) as the biocompatible bottom layer. The obvious bi-layered structure and boundary between the two layers was distinctly showed in scanning electron microscope (SEM) pictures. X-ray diffraction (XRD), attenuated total reflection flourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), thermo-gravimetric analysis (TGA) and water contact angle (WCA) analysis were used to investigate the physical and chemical properties and obtained results demonstrated the successful preparation of the bi-layered membranes. The prepared bi-layered wound dressing displayed both strong antibacterial activity and good biocompatibility in vitro. The bilayered membranes with biocompatible and antibacterial properties would be next generation of wound dressing.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Gelatina/química , Membranas Artificiales , Poliésteres/química , Bacterias/efectos de los fármacos , Fenómenos Químicos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
19.
J Mater Chem B ; 7(46): 7338-7350, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31693046

RESUMEN

Hemostatic materials based on collagen and chitin are commonly assessed with regard to their topical absorbability and bioactivity. However, their clinical application faces challenges such as relatively long hemostatic and wound healing times, single function, as well as wound bleeding in patients with blood diseases. Herein, a novel bio-inspired "cotton-like" collagen aggregate/chitin based biomaterial for rapid hemostatic and tissue repair (V-3D-Ag-col) was fabricated by a specific gradient-removal solvent approach. Significantly, for the first time, an advanced collagen aggregate (Ag-col) composed of typical D-periodic cross-striated collagen fibrils and thick collagen fiber bundles was used instead of traditional collagen molecules (Col) to construct a hemostatic material. The target material showed a biomimetic 3D microstructure and "cotton-like" appearance, as expected, which were conducive to platelet adhesion and aggregation. The fabricated V-3D-Ag-col exhibited superior thermo-stability, hemostatic activity and biodegradability. More importantly, V-3D-Ag-col could significantly promote cell growth and proliferation. Further, V-3D-Ag-col could accelerate the wound healing process better than the same material based on conventional collagen (V-3D-Col). In consequence, V-3D-Ag-col has the potential to become a new generation of collagen-absorbable functional hemostatic materials. Furthermore, Ag-col can replace the currently available conventional collagen materials as raw materials for the new generation of collagen-based biomedical materials.


Asunto(s)
Materiales Biocompatibles/química , Biomimética , Quitina/química , Colágeno/química , Hemostáticos/química , Animales , Coagulación Sanguínea , Oído/irrigación sanguínea , Hemostasis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hígado/metabolismo , Ensayo de Materiales , Ratones , Músculo Esquelético/metabolismo , Adhesividad Plaquetaria , Agregación Plaquetaria , Conejos , Ratas , Ratas Sprague-Dawley , Trombosis , Ingeniería de Tejidos , Andamios del Tejido/química , Cicatrización de Heridas
20.
RSC Adv ; 8(73): 42123-42132, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-35558764

RESUMEN

Natural collagen has good biocompatibility and ability to promote tissue regeneration; however, its low flexibility and easy degradation hinder its applications in wound repair. In this study, we synthesized a skin wound-repairing hydrogel with good bioactivity and high toughness and adhesion. Inspired by the good adhesion of natural mussels, dopamine was grafted onto oxidized sodium alginate to synthesize a new crosslinker (COA), which was introduced into the collagen/polyacrylamide (PAM-Col) double network to synthesize hydrogel. The morphological characterization of the hydrogel using scanning electron microscopy confirmed that the hydrogel formed a more chaotic interconnected structure after the introduction of COA. PAM-Col-COA hydrogel had good mechanical properties, skin tissue adhesion, water absorption, and sustained biological activity. In vivo wound healing experiments showed that hydrogel accelerates the wound healing process and has potential applications in wound dressings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA