RESUMEN
BACKGROUND: New classes of long-lasting insecticidal nets (LLINs) combining mixtures of insecticides with different modes of action could put malaria control back on track after rebounds in transmission across sub-Saharan Africa. We evaluated the relative efficacy of pyriproxyfen-pyrethroid LLINs and chlorfenapyr-pyrethroid LLINs compared with standard LLINs against malaria transmission in an area of high pyrethroid resistance in Benin. METHODS: We conducted a cluster-randomised, superiority trial in Zou Department, Benin. Clusters were villages or groups of villages with a minimum of 100 houses. We used restricted randomisation to randomly assign 60 clusters to one of three LLIN groups (1:1:1): to receive nets containing either pyriproxyfen and alpha-cypermethrin (pyrethroid), chlorfenapyr and alpha-cypermethrin, or alpha-cypermethrin only (reference). Households received one LLIN for every two people. The field team, laboratory staff, analyses team, and community members were masked to the group allocation. The primary outcome was malaria case incidence measured over 2 years after net distribution in a cohort of children aged 6 months-10 years, in the intention-to-treat population. This study is ongoing and is registered with ClinicalTrials.gov, NCT03931473. FINDINGS: Between May 23 and June 24, 2019, 53 854 households and 216 289 inhabitants were accounted for in the initial census and included in the study. Between March 19 and 22, 2020, 115 323 LLINs were distributed to 54 030 households in an updated census. A cross-sectional survey showed that study LLIN usage was highest at 9 months after distribution (5532 [76·8%] of 7206 participants), but decreased by 24 months (4032 [60·6%] of 6654). Mean malaria incidence over 2 years after LLIN distribution was 1·03 cases per child-year (95% CI 0·96-1·09) in the pyrethroid-only LLIN reference group, 0·84 cases per child-year (0·78-0·90) in the pyriproxyfen-pyrethroid LLIN group (hazard ratio [HR] 0·86, 95% CI 0·65-1·14; p=0·28), and 0·56 cases per child-year (0·51-0·61) in the chlorfenapyr-pyrethroid LLIN group (HR 0·54, 95% CI 0·42-0·70; p<0·0001). INTERPRETATION: Over 2 years, chlorfenapyr-pyrethroid LLINs provided greater protection from malaria than pyrethroid-only LLINs in an area with pyrethroid-resistant mosquitoes. Pyriproxyfen-pyrethroid LLINs conferred protection similar to pyrethroid-only LLINs. These findings provide crucial second-trial evidence to enable WHO to make policy recommendations on these new LLIN classes. This study confirms the importance of chlorfenapyr as an LLIN treatment to control malaria in areas with pyrethroid-resistant vectors. However, an arsenal of new active ingredients is required for successful long-term resistance management, and additional innovations, including pyriproxyfen, need to be further investigated for effective vector control strategies. FUNDING: UNITAID, The Global Fund.
Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Humanos , Benin/epidemiología , Estudios Transversales , Piretrinas/farmacología , Malaria/epidemiología , Malaria/prevención & control , Control de MosquitosRESUMEN
BACKGROUND: Long-lasting insecticidal nets (LLINs) are currently the primary method of malaria control in sub-Saharan Africa and have contributed to a significant reduction in malaria burden over the past 15 years. However, this progress is threatened by the wide-scale selection of insecticide-resistant malaria vectors. It is, therefore, important to accelerate the generation of evidence for new classes of LLINs. METHODS: This protocol presents a three-arm superiority, single-blinded, cluster randomized controlled trial to evaluate the impact of 2 novel dual-active ingredient LLINs on epidemiological and entomological outcomes in Benin, a malaria-endemic area with highly pyrethroid-resistant vector populations. The study arms consist of (i) Royal Guard® LLIN, a net combining a pyrethroid (alpha-cypermethrin) plus an insect growth regulator (pyriproxyfen), which in the adult female is known to disrupt reproduction and egg fertility; (ii) Interceptor G2® LLIN, a net incorporating two adulticides (alpha-cypermethrin and chlorfenapyr) with different modes of action; and (iii) the control arm, Interceptor® LLIN, a pyrethroid (alpha-cypermethrin) only LLIN. In all arms, one net for every 2 people will be distributed to each household. Sixty clusters were identified and randomised 1:1:1 to each study arm. The primary outcome is malaria case incidence measured over 24 months through active case detection in a cohort of 25 children aged 6 months to 10 years, randomly selected from each cluster. Secondary outcomes include 1) malaria infection prevalence (all ages) and prevalence of moderate to severe anaemia in children under 5 years old, measured at 6 and 18 months post-intervention; 2) entomological indices measured every 3 months using human landing catches over 24 months. Insecticide resistance intensity will also be monitored over the study period. DISCUSSION: This study is the second cluster randomised controlled trial to evaluate the efficacy of these next-generation LLINs to control malaria transmitted by insecticide-resistant mosquitoes. The results of this study will form part of the WHO evidence-based review to support potential public health recommendations of these nets and shape malaria control strategies of sub-Saharan Africa for the next decade. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03931473 , registered on 30 April 2019.
Asunto(s)
Resistencia a los Insecticidas/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Animales , Benin/epidemiología , Humanos , Incidencia , Insecticidas/farmacología , Malaria/epidemiología , Malaria/transmisión , Prevalencia , Piretrinas/farmacología , Piridinas/farmacologíaRESUMEN
BACKGROUND: Malaria continues to kill approximately 650 000 people each year. There is evidence that some second-generation insecticide-treated nets, which combine insecticide formulations with different modes of action, are protective against malaria while the nets are new; however, evidence for their impact over 3 years is scarce. In this study, we report the third-year results of a cluster-randomised controlled trial assessing the long-term effectiveness of dual-active ingredient long-lasting insecticidal nets (LLINs). METHODS: This is a secondary analysis of a cluster-randomised controlled trial, carried out between May 23, 2019, and April 30, 2023, in southern Benin. Restricted randomisation was used to assign 60 clusters (villages or groups of villages with a minimum of 100 households) to the three study groups (1:1:1) to evaluate the efficacy of pyriproxyfen-pyrethroid LLINs and chlorfenapyr-pyrethroid LLINs compared with pyrethroid-only LLINs (reference) against malaria transmission. The study staff and communities were masked to the group allocation. The primary outcome was malaria incidence measured over the third year after LLIN distribution, in a cohort of children aged 6 months to 9 years at the time of enrolment, in the intention-to-treat population. Here, we present the data of the third year post-LLIN distribution. The trial was registered with ClinicalTrials.gov, NCT03931473. FINDINGS: Study net use declined over the 3 years and was consistently lowest in the pyriproxyfen-pyrethroid LLIN group (at 36 months: 889 [39·4%] of 2257 participants vs 1278 [52·2%] of 2450 participants for the chlorfenapyr-pyrethroid LLIN group and 1400 [57·6%] of 2430 participants for the pyrethroid-only LLIN group). The cohort of children for the third year of follow-up (600 per group) were enrolled between April 9 and 30, 2022. Mean malaria incidence during the third year after distribution was 1·19 cases per child-year (95% CI 1·09-1·29) in the pyrethroid-only LLIN reference group, 1·21 cases per child-year (1·12-1·31) in the pyriproxyfen-pyrethroid LLIN group (hazard ratio [HR] 1·02, 95% CI 0·71-1·44; p=0·92), and 0·96 cases per child-year (0·88-1·05) in the chlorfenapyr-pyrethroid LLIN group (HR 0·80, 0·56-1·17; p=0·25). No adverse events related to study nets were reported by participants. INTERPRETATION: During the third year, as was also observed during the first 2 years, the pyriproxyfen-pyrethroid LLIN group did not have superior protection against malaria cases compared with the standard LLIN group. In the third year, people living in the chlorfenapyr-pyrethroid LLIN group no longer benefited from greater protection against malaria cases and infections than those living in the pyrethroid-only LLIN group. This was probably influenced by lower study net use than previous years and the declining concentration of partner insecticides in the nets. FUNDING: UNITAID, The Global Fund. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Control de Mosquitos , Piretrinas , Piridinas , Humanos , Benin/epidemiología , Piretrinas/farmacología , Malaria/prevención & control , Malaria/epidemiología , Control de Mosquitos/métodos , Insecticidas/farmacología , Piridinas/farmacología , Preescolar , Femenino , Niño , Masculino , Lactante , Incidencia , AdolescenteRESUMEN
The present cluster-randomised control trial aims to assess the entomological efficacy of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr LLINs compared to the standard pyrethroid-only LLINs, in their third year of community usage. Adult mosquito collections were performed every 3 months, in 4 randomly selected houses in each of the 60 trial clusters, using human landing catches. Adult mosquitoes were morphologically identified and Anopheles vectors were molecularly speciated and screened for the presence of the L1014F kdr mutation using PCR. Plasmodium falciparum sporozoite infection was assessed using ELISA. A subset of An. gambiae s.l. was also dissected to examine parity and fertility rates across study arms. There was no evidence of a significant reduction in indoor vector density and entomological inoculation rate by the pyrethroid-pyriproxyfen [DR 0.94 (95% CI 0.46-1.88), p = 0.8527; and RR 1.10 (95% CI 0.44-2.72), p = 0.8380], and pyrethroid-chlorfenapyr [DR 0.74 (95% CI 0.37-1.48), p = 0.3946; and RR 1.00 (95% CI 0.40-2.50), p = 0.9957] LLINs, respectively. The same trend was observed outdoors. Frequencies of the L1014F kdr mutation, as well as parous and fertility rates, were similar between study arms. In the third year after net distribution, entomological indicators show that the two dual active-ingredients nets performed similarly to the standard pyrethroid-only LLIN. To maintain malaria gains, it is crucial that net distribution cycles fit with their operational lifespan.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Control de Mosquitos , Mosquitos Vectores , Plasmodium falciparum , Piretrinas , Piridinas , Piretrinas/farmacología , Animales , Anopheles/parasitología , Anopheles/efectos de los fármacos , Humanos , Control de Mosquitos/métodos , Benin , Mosquitos Vectores/parasitología , Mosquitos Vectores/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Malaria/transmisión , Malaria/prevención & control , Insecticidas/farmacología , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Femenino , Resistencia a los Insecticidas/genéticaRESUMEN
BACKGROUND: The massive scale-up of long-lasting insecticidal nets (LLIN) has led to a major reduction in malaria burden in many sub-Saharan African (SSA) countries. The World Health Organization (WHO) has recently issued a strong recommendation for the use of chlorfenapyr-pyrethroid LLINs compared to standard pyrethroid-only LLINs in areas of high insecticide resistance intensity. However, there is still a lack of conclusive evidence on the efficacy of piperonyl butoxide-pyrethroid (PBO-py) LLINs, especially in West Africa, where vector composition and resistance mechanisms may be different from vectors in East Africa. METHODS: This is a three-arm, superiority, triple-blinded, cluster randomised trial, with village as the unit of randomisation. This study conducted in Côte d'Ivoire will evaluate the efficacy on epidemiological and entomological outcomes of (1) the control arm: MAGNet® LN, which contains the pyrethroid, alpha-cypermethrin, (2) VEERALIN® LN, a net combining the synergist PBO and alpha-cypermethrin, and (3) Interceptor® G2 LN, which incorporates chlorfenapyr and alpha-cypermethrin, two adulticides with different mechanisms of action. A total of 33 villages with an average of 200 households per village will be identified, mapped, and randomised in a ratio of 1:1:1. Nets will be distributed at a central point following national guidelines with 1 net for every 2 people. The primary outcome of the trial will be incidence of malaria cases (confirmed by rapid diagnostic test (RDT)) in a cohort of 50 children aged 6 months to 10 years in each cluster, followed for 12 months (active case detection). Secondary outcomes are cross-sectional community prevalence of malaria infection (confirmed by RDT) in the study population at 6 and 12 months post-intervention (50 randomly selected persons per cluster), vector density, entomological inoculation rate (EIR), and phenotypic and genotypic insecticide resistance at baseline and 12 months post-intervention in 3 sentinel villages in each treatment arm. DISCUSSION: In addition to generating further evidence for next-generation LLINs, this study will also provide the first evidence for pyrethroid-PBO nets in a West African setting. This could further inform WHO recommendations on the pragmatic use of pyrethroid-PBO nets. TRIAL REGISTRATION: ClinicalTrials.gov NCT05796193. Registered on April 3, 2023.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Niño , Animales , Humanos , Butóxido de Piperonilo/farmacología , Côte d'Ivoire/epidemiología , Estudios Transversales , Control de Mosquitos , Mosquitos Vectores , Piretrinas/farmacología , Insecticidas/efectos adversos , Resistencia a los Insecticidas , Malaria/epidemiología , Malaria/prevención & controlRESUMEN
BACKGROUND: Studies evaluating the attrition, physical and insecticidal durability of dual active ingredient (AI) insecticide-treated nets (ITNs) are essential for making programmatic decisions regarding their deployment. We performed a prospective study embedded in a cluster randomised controlled trial (cRCT) to evaluate the attrition, fabric integrity and insecticidal durability of Interceptor® G2 (alpha-cypermethrin-chlorfenapyr) and Royal Guard® (alpha-cypermethrin-pyriproxyfen), compared to Interceptor® (alpha-cypermethrin) in Benin. METHODS: A total of 2428 study nets in 1093 randomly selected households in five clusters per arm of the cRCT were monitored for ITN attrition and fabric integrity every 6-12 months post-distribution. Householders were further surveyed to investigate non-study net use and their preference for ITN fabric types used in the study nets. A second cohort of 120 nets per ITN type were withdrawn every 12 months and assessed for chemical content and insecticidal activity in laboratory bioassays. Alpha-cypermethrin bioefficacy was investigated using the susceptible Anopheles gambiae Kisumu strain, and chlorfenapyr and pyriproxyfen bioefficacy were investigated using the pyrethroid-resistant Anopheles coluzzii Akron strain. Net pieces were tested in WHO cone bioassays and tunnel tests for alpha-cypermethrin and in tunnel tests for chlorfenapyr; pyriproxyfen activity was assessed in cone bioassays as the reduction in fertility of blood-fed survivors using ovary dissection. Bioefficacy was expressed as the proportion of ITNs passing predetermined WHO criteria, namely knock-down ≥ 95% or 24/72 h mortality ≥ 80% or reduction in fertility ≥ 50%. RESULTS: Overall ITN survivorship was 52% at 24 months and fell to 15% at 36 months. Median ITN survival time was lower with Royal Guard® relative to Interceptor® [1.6 vs 2.3 years; hazard ratio (HR) 1.49, 95% confidence interval (CI) 1.36-1.66; p < 0.001] and Interceptor® G2 (1.6 vs 2.1 years; HR 1.33, 95% CI 1.20-1.47; p < 0.001). Householders overwhelmingly preferred polyester nets over polyethylene nets (96%), and more Royal Guard® nets were replaced with spare polyester nets from previous campaigns. All Royal Guard® nets passed efficacy criteria for alpha-cypermethrin at all time points (100%) while ITN pass rates after 24 months had fallen to < 40% for pyriproxyfen and chlorfenapyr. The chemical content analysis showed a higher loss rate of the non-pyrethroid insecticides relative to the pyrethroids in each dual ingredient AI ITN; 74% vs 47% for Royal Guard® and 85% vs 63% for Interceptor® G2 at 36 months. CONCLUSIONS: The median ITN survival time for Interceptor® G2 (2.1 years) and Royal Guard® (1.6 years) in Benin is substantially lower than 3 years. Royal Guard® nets were discarded more quickly by householders, partly due to their low preference for polyethylene nets. The insecticidal activity of the non-pyrethroid insecticides in both dual AI ITNs was short-lived compared to alpha-cypermethrin. The results corroborate the findings from the cRCT conducted in Benin.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Control de Mosquitos , Piretrinas , Piretrinas/farmacología , Animales , Benin , Insecticidas/farmacología , Humanos , Anopheles/efectos de los fármacos , Anopheles/fisiología , Control de Mosquitos/métodos , Piridinas/farmacología , Femenino , Estudios Prospectivos , Malaria/prevención & control , Malaria/transmisiónRESUMEN
The present study aimed to assess mosquito species diversity, distribution, and ecological preferences in the Covè, Ouinhi, and Zangnanado communes, Southern Benin. Such information is critical to understand mosquito bio-ecology and to focus control efforts in high-risk areas for vector-borne diseases. Mosquito collections occurred quarterly in 60 clusters between June 2020 and April 2021, using human landing catches. In addition to the seasonal mosquito abundance, Shannon's diversity, Simpson, and Pielou's equitability indices were also evaluated to assess mosquito diversity. Ecological niche models were developed with MaxEnt using environmental variables to assess species distribution. Overall, mosquito density was higher in the wet season than in the dry season in all communes. A significantly higher Shannon's diversity index was also observed in the wet season than in the dry seasons in all communes (p < 0.05). Habitat suitability of An. gambiae s.s., An. coluzzii, Cx. quinquefasciatus and Ma. africana was highly influenced by slope, isothermality, site aspect, elevation, and precipitation seasonality in both wet and dry seasons. Overall, depending on the season, the ecological preferences of the four main mosquito species were variable across study communes. This emphasizes the impact of environmental conditions on mosquito species distribution. Moreover, mosquito populations were found to be more diverse in the wet season compared to the dry season.
Asunto(s)
Biodiversidad , Ecosistema , Malaria , Mosquitos Vectores , Estaciones del Año , Animales , Benin , Mosquitos Vectores/fisiología , Malaria/transmisión , Culicidae/clasificación , Culicidae/fisiología , Humanos , Anopheles/fisiología , Anopheles/clasificaciónRESUMEN
BACKGROUND: Long-lasting insecticidal nets (LLINs) may have different impacts on distinct mosquito vector species. We assessed the efficacy of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr LLINs on the density of Anopheles gambiae s.s. and An. coluzzii compared to pyrethroid-only nets in a three-arm cluster randomised control trial in Benin. METHODS: Indoor and outdoor collections of adult mosquitoes took place in 60 clusters using human landing catches at baseline and every 3 months for 2 years. After morphological identification, around 15% of randomly selected samples of An. gambiae s.l. were dissected to determine parity, species (using PCR). RESULTS: Overall, a total of 46,613 mosquito specimens were collected at baseline and 259,250 in the eight quarterly collections post-net distribution. Post-net distribution, approximately 70% of the specimens of An. gambiae s.l. speciated were An. coluzzii, while the rest were mostly composed of An. gambiae s.s. with a small proportion (< 1%) of hybrids (An. gambiae/coluzzii). There was no evidence of a significant reduction in vector density indoors in either primary vector species [An. coluzzii: DR (density ratio) = 0.62 (95% CI 0.21-1.77), p = 0.3683 for the pyrethroid-pyriproxyfen LLIN and DR = 0.56 (95% CI 0.19-1.62), p = 0.2866 for the pyrethroid-chlorfenapyr LLIN, An. gambiae s.s.: DR = 0.52 (95% CI 0.18-1.46), p = 0.2192 for the pyrethroid-pyriproxyfen LLIN and DR = 0.53 (95% CI 0.19-1.46), p = 0.2222 for the pyrethroid-chlorfenapyr]. The same trend was observed outdoors. Parity rates of An. gambiae s.l. were also similar across study arms. CONCLUSIONS: Compared with pyrethroid-only LLINs, pyrethroid-chlorfenapyr LLINs and pyrethroid-pyriproxyfen LLINs performed similarly against the two primary mosquito species An. gambiae s.s. and An. coluzzii in Benin.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Humanos , Benin , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Piretrinas/farmacologíaRESUMEN
BACKGROUND: Having a maximum number of people vaccinated was the objective to control the COVID-19 pandemic. We report in this manuscript the factors associated with the willingness to be vaccinated against COVID-19 during the pandemic period. METHODS: From April to May 2022, a community-based cross-sectional survey was performed. Participants were randomly selected from four districts in Benin (taking into account the COVID-19 prevalence). Mixed-effect logistic regression models were used to identify the variables associated with COVID-19 vaccine acceptance. RESULTS: A total of 2069 participants were included. The proportion of vaccine acceptance was 43.3%. A total of 24.2% were vaccinated and showed proof of vaccination. The population's request for vaccination was higher after the third epidemic wave. The district of residence, the education level, a fear of being infected, the channel of information, poor medical conditions, a good knowledge of the transmission mode and symptoms, and good behaviors were significantly associated with vaccine acceptance. CONCLUSION: The overall acceptance of the COVID-19 vaccine in the Beninese population was relatively high. However, vaccine campaigns in areas with a low acceptance as well as the disclosure of information, particularly on our knowledge of the disease and the safety, side effects, and effectiveness of the COVID-19 vaccines, should be strengthened with adapted and consistent messages.
RESUMEN
Globally, negative impacts of the COVID-19 pandemic on malaria prevention and control efforts have been caused by delayed distributions of long-lasting insecticidal nets (LLIN), decreased outpatient attendance, and disruptions to malaria testing and treatment. Using a mixed methods approach, we aimed to evaluate the impact of COVID-19 on community-level malaria prevention and health-seeking practices in Benin more than one year after the start of the COVID-19 pandemic. We collected data through community-based cross-sectional surveys with 4200 households and ten focus group discussions (FGDs). Mixed effect logistic regression models accounting for a clustered sampling design were used to identify variables associated with main outcomes (good COVID-19 knowledge, LLIN usage and access, and avoidance of health centres). Consistent with the experiences of FGD participants, receiving information from radios or televisions was significantly associated with good COVID-19 knowledge and avoiding health centres because of the pandemic (p<0.001 for both). Qualitative findings also revealed varying and polarizing changes in health-seeking behaviours with participants noting that they either did not change their health-seeking behaviours or went to health centres less or more often because of the pandemic. LLIN usage and access did not decrease in the study area because of the pandemic (LLIN usage: 88% in 2019 to 99.9% in 2021; LLIN access: 62% in 2019 to 73% in 2021). An unexpected change and unintended challenge for sustained malaria prevention included families socially distancing in their homes, resulting in a shortage of LLINs. Our findings showed that there were minimal community-level impacts of the coronavirus pandemic on malaria prevention and health seeking behaviours in rural Benin, which highlights the importance of efforts to sustain malaria prevention and control interventions in the context of the COVID-19 pandemic.
RESUMEN
The efficacy of a vector control tool in reducing mosquito biting is crucial for its acceptability. The present study compared the vector density of Culex spp. And Mansonia spp. across clusters, which received two dual-active ingredient (a.i.) long-lasting insecticidal nets (LLINs) and a standard pyrethroid-only LLIN, and assessed the seasonality of these mosquito genera. A total of 85,723 Culex spp. and 144,025 Mansonia spp. were caught over the study period. The density of Culex and Mansonia was reduced in all three arms over the study period. There was no evidence of a significant reduction in the indoor or outdoor density of Culex spp. in either dual-a.i. LLIN arm as compared to the standard pyrethroid-only net arm. A similar trend was observed with Mansonia spp. A high density of Culex spp. was found both in rainy and dry seasons, while for Mansonia spp., this was mainly observed during the rainy season. These results suggest that the novel insecticides in the dual-a.i. LLINs did not have an additional impact on these species and that pyrethroids might still be effective on them. Further work is required to determine whether these species of mosquitoes have resistance to the insecticides tested in this trial.
RESUMEN
Selection of mosquito collection methods is of crucial importance to evaluate the impact of vector control tools on entomological outcomes. During a cluster randomised control trial evaluating the relative efficacy of two dual-active ingredient (a.i.) long-lasting insecticidal nets (LLINs) compared to pyrethroid-only LLINs, we assessed the performance of different mosquito collection methods: Human landing catches (HLC), Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSC). Anopheles mosquitoes were collected using three collection methods in 4 houses, in each of the 60 trial clusters at baseline and every quarter for 24 months using PSCs and HLCs, while CDC light traps were performed during two quarters only. Mean density of vectors collected per method per night was the highest with HLCs (15.9), followed by CDC light traps (6.8); with PSCs (1.1) collecting 10 times less mosquitoes than HLCs. All three collection methods collected fewer mosquitoes in the Interceptor G2® dual a.i. arm, compared to the other trial arms, although only HLCs and PSCs demonstrated strong evidence of this due to a greater number of collection rounds undertaken, than CDC light traps. The broadly similar results regarding the differential impact of the two dual a.i. LLINs showed by the three collection methods suggest that the more ethically acceptable, cheaper, and logistically simpler methods such as CDC light traps could be prioritised for use in large community trials for measuring the efficacy of vector control tools.
Asunto(s)
Anopheles , Insecticidas , Piretrinas , Estados Unidos , Animales , Humanos , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores , Piretrinas/farmacologíaRESUMEN
Malaria remains the main cause of morbidity and mortality in Benin despite the scale-up of long-lasting insecticidal nets (LLINs), indoor residual spraying, and malaria case management. This study aimed to determine the malaria burden and its associated risk factors in a rural area of Benin characterized by high net coverage and pyrethroid-resistant mosquito vectors. A community-based cross-sectional survey was conducted in three districts in southern Benin. Approximately 4,320 randomly selected participants of all ages were tested for malaria using rapid diagnostic tests within 60 clusters. Risk factors for malaria infection were evaluated using mixed-effect logistic regression models. Despite high population net use (96%), malaria infection prevalence was 43.5% (cluster range: 15.1-72.7%). Children (58.7%) were more likely to be infected than adults (31.2%), with a higher malaria prevalence among older children (5-10 years: 69.1%; 10-15 years: 67.9%) compared with young children (< 5 years: 42.1%); however, young children were more likely to be symptomatic. High household density, low socioeconomic status, young age (< 15 years), poor net conditions, and low net usage during the previous week were significantly associated with malaria infection. Malaria prevalence remains high in this area of intense pyrethroid resistance despite high net use. New classes of LLINs effective against resistant vectors are therefore crucial to further reduce malaria in this area.
RESUMEN
BACKGROUND: This study provides detailed characteristics of vector populations in preparation for a three-arm cluster randomized controlled trial (RCT) aiming to compare the community impact of dual active-ingredient (AI) long-lasting insecticidal nets (LLINs) that combine two novel insecticide classes-chlorfenapyr or pyriproxifen-with alpha-cypermethrin to improve the prevention of malaria transmitted by insecticide-resistant vectors compared to standard pyrethroid LLINs. METHODS: The study was carried out in 60 villages across Cove, Zangnanando and Ouinhi districts, southern Benin. Mosquito collections were performed using human landing catches (HLCs). After morphological identification, a sub-sample of Anopheles gambiae s.l. were dissected for parity, analyzed by PCR for species and presence of L1014F kdr mutation and by ELISA-CSP to identify Plasmodium falciparum sporozoite infection. WHO susceptibility tube tests were performed by exposing adult An. gambiae s.l., collected as larvae from each district, to 0.05% alphacypermethrin, 0.75% permethrin, 0.1% bendiocarb and 0.25% pirimiphos-methyl. Synergist assays were also conducted with exposure first to 4% PBO followed by alpha-cypermethrin. RESULTS: An. gambiae s.l. (n = 10807) was the main malaria vector complex found followed by Anopheles funestus s.l. (n = 397) and Anopheles nili (n = 82). An. gambiae s.l. was comprised of An. coluzzii (53.9%) and An. gambiae s.s. (46.1%), both displaying a frequency of the L1014F kdr mutation >80%. Although more than 80% of people slept under standard LLIN, human biting rate (HBR) in An. gambiae s.l. was higher indoors [26.5 bite/person/night (95% CI: 25.2-27.9)] than outdoors [18.5 b/p/n (95% CI: 17.4-19.6)], as were the trends for sporozoite rate (SR) [2.9% (95% CI: 1.7-4.8) vs 1.8% (95% CI: 0.6-3.8)] and entomological inoculation rate (EIR) [21.6 infected bites/person/month (95% CI: 20.4-22.8) vs 5.4 (95% CI: 4.8-6.0)]. Parous rate was 81.6% (95%CI: 75.4-88.4). An. gambiae s.l. was resistant to alpha-cypermethrin and permethrin but, fully susceptible to bendiocarb and pirimiphos-methyl. PBO pre-exposure followed by alpha-cypermethrin treatment induced a higher 24 hours mortality compared to alphacypermethrin alone but not exceeding 40%. CONCLUSIONS: Despite a high usage of standard pyrethroid LLINs, the study area is characterized by intense malaria transmission. The main vectors An. coluzzii and An. gambiae s.s. were both highly resistant to pyrethroids and displayed multiple resistance mechanisms, L1014F kdr mutation and mixed function oxidases. These conditions of the study area make it an appropriate site to conduct the trial that aims to assess the effect of novel dual-AI LLINs on malaria transmitted by insecticide-resistant vectors.