Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochemistry ; 54(36): 5632-45, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26293213

RESUMEN

The genome of Leishmania major encodes a type II fatty acid biosynthesis pathway for which no structural or biochemical information exists. Here, for the first time, we have characterized the central player of the pathway, the acyl carrier protein (LmACP), using nuclear magnetic resonance (NMR). Structurally, the LmACP molecule is similar to other type II ACPs, comprising a four-helix bundle, enclosing a hydrophobic core. Dissimilarities in sequence, however, exist in helix II (recognition helix) of the protein. The enzymatic conversion of apo-LmACP into the holo form using type I (Escherichia coli AcpS) and type II (Sfp type) phosphopantetheinyl transferases (PPTs) is relatively slow. Mutagenesis studies underscore the importance of the residues present at the protein-protein interaction interface of LmACP in modulating the activity of PPTs. Interestingly, the cognate PPT for this ACP, the L. major 4'-phosphopantetheinyl transferase (LmPPT), does not show any enzymatic activity toward it, though it readily converts other type I and type II ACPs into their holo forms. NMR chemical shift perturbation studies suggest a moderately tight complex between LmACP and its cognate PPT, suggesting inhibition. We surmise that the unique surface of LmACP might have evolved to complement its cognate enzyme (LmPPT), possibly for the purpose of regulation.


Asunto(s)
Proteína Transportadora de Acilo/química , Leishmania major/metabolismo , Proteínas Protozoarias/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Escherichia coli/metabolismo , Holoenzimas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/metabolismo , Resonancia Magnética Nuclear Biomolecular , Plasmodium falciparum/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141016, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615987

RESUMEN

Acyl-Coenzyme A binding domain containing proteins (ACBDs) are ubiquitous in nearly all eukaryotes. They can exist as a free protein, or a domain of a large, multidomain, multifunctional protein. Besides modularity, ACBDs also display multiplicity. The same organism may have multiple ACBDs, differing in sequence and organization. By virtue of this diversity, ACBDs perform functions ranging from transport, synthesis, trafficking, signal transduction, transcription, and gene regulation. In plants and some microorganisms, these ACBDs are designated ACBPs (acyl-CoA binding proteins). The simplest ACBD/ACBP is a small, ∼10 kDa, soluble protein, comprising the acyl-CoA binding (ACB) domain. Most of these small ACBDs exist as monomers, while a few show a tendency to oligomerize. In sync with those studies, we report the crystal structure of two ACBDs from Leishmania major, named ACBP103, and ACBP96 based on the number of residues present. Interestingly, ACBP103 crystallized as a monomer and a dimer under different crystallization conditions. Careful examination of the dimer disclosed an exposed 'AXXA' motif in the helix I of the two ACBP103 monomers, aligned in a head-to-tail arrangement in the dimer. Glutaraldehyde cross-linking studies confirm that apo-ACBP103 can self-associate in solution. Isothermal titration calorimetry studies further show that ACBP103 can bind ligands ranging from C8 - to C20-CoA, and the data could be best fit to a 'two sets of sites'/sequential binding site model. Taken together, our studies show that Leishmania major ACBP103 can self-associate in the apo-form through a unique dimerization motif, an interaction that may play an important role in its function.


Asunto(s)
Secuencias de Aminoácidos , Leishmania major , Multimerización de Proteína , Leishmania major/metabolismo , Leishmania major/genética , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Cristalografía por Rayos X , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Modelos Moleculares , Sitios de Unión
3.
Biochim Biophys Acta Gen Subj ; 1866(7): 130151, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35421539

RESUMEN

α-Synuclein (α-Syn) aggregation/fibrillation is a leading cause of neuronal death and is one of the major pathogenic factors involved in the progression of Parkinson's' disease (PD). Against this backdrop, discovering new molecules as inhibitors or modulators of α-Syn aggregation/fibrillation is a subject of enormous research. In this study, we have shown modulation, disaggregation, and neuroprotective potential of aloin and emodin against α-Syn aggregation/fibrillation. Thioflavin T (ThT) fluorescence assay showed an increase in lag phase from (51.14 ± 2) h to (68.58 ± 2) h and (74.14 ± 3) h in the presence of aloin and emodin respectively. ANS binding assay represents a modulatory effect of these molecules on hydrophobicity which is crucial for aggregates/fibril formation. NMR spectroscopy and tyrosine quenching studies reveal the binding of aloin/emodin with monomeric α-Syn. TEM and DLS micrographs illustrate the attenuating effect of aloin/emodin against the development of large aggregates/fibrils. Our seeding experiments suggest aloin/emodin generate seeding incompetent oligomers that direct the off-pathway aggregation/fibrillation. Also, aloin/emodin capably reduces the fibrils-induced cytotoxicity and disassembles the preexisting amyloid fibrils. These findings provide deep insight into the modulatory mechanism of α-Syn aggregation/fibrillation in the presence of aloin and emodin, thereby suggesting their potential roles as promising therapeutic molecules against aggregation/fibrillation related disorders.


Asunto(s)
Emodina , Enfermedad de Parkinson , Amiloide/metabolismo , Emodina/análogos & derivados , Emodina/farmacología , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/química
4.
Sci Rep ; 7(1): 1284, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28455498

RESUMEN

Src homology domain containing leukocyte protein of 65 kDa (SLP65), the growth factor receptor binding protein 2 (Grb2), and the guanine nucleotide exchange factor for the Rho family GTPases (Vav), self associate in unstimulated B cells as components of the preformed B cell receptor transducer module, in an SH3-dependent manner. The complex enables the B cell to promptly respond to BCR aggregation, resulting in signal amplification. It also facilitates Vav translocation to the membrane rafts, for activation. Here we uncover the molecular mechanism by which the complex may be formed in the B cell. The C-terminal SH3 domain (SH3C) of Grb2 bivalently interacts with the atypical non-PxxP proline rich region of SLP65, and the N-terminal SH3 domain (SH3N) of Vav, both the interactions crucial for the proper functioning of the B cell. Most surprisingly, the two ligands bind the same ligand binding site on the surface of Grb2 SH3C. Addition of SLP65 peptide to the Grb2-Vav complex abrogates the interaction completely, displacing Vav. However, the addition of Vav SH3N to the SLP65-Grb2 binary complex, results in a trimeric complex. Extrapolating these results to the in vivo conditions, Grb2 should bind the SLP65 transducer module first, and then Vav should associate.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteína Adaptadora GRB2/química , Proteínas Proto-Oncogénicas c-vav/química , Dominios Homologos src , Animales , Ligandos , Ratones , Dominios Proteicos Ricos en Prolina , Unión Proteica , Sistemas de Translocación de Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA