RESUMEN
INTRODUCTION: This study investigates how quantitative texture analysis can be used to non-invasively identify novel radiogenomic correlations with clear cell renal cell carcinoma (ccRCC) biomarkers. METHODS: The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma open-source database was used to identify 190 sets of patient genomic data that had corresponding multiphase contrast-enhanced CT images in The Cancer Imaging Archive. 2,824 radiomic features spanning fifteen texture families were extracted from CT images using a custom-built MATLAB software package. Robust radiomic features with strong inter-scanner reproducibility were selected. Random forest, AdaBoost, and elastic net machine learning (ML) algorithms evaluated the ability of the selected radiomic features to predict the presence of 12 clinically relevant molecular biomarkers identified from the literature. ML analysis was repeated with cases stratified by stage (I/II vs. III/IV) and grade (1/2 vs. 3/4). 10-fold cross validation was used to evaluate model performance. RESULTS: Before stratification by tumor grade and stage, radiomics predicted the presence of several biomarkers with weak discrimination (AUC 0.60-0.68). Once stratified, radiomics predicted KDM5C, SETD2, PBRM1, and mTOR mutation status with acceptable to excellent predictive discrimination (AUC ranges from 0.70 to 0.86). CONCLUSIONS: Radiomic texture analysis can potentially identify a variety of clinically relevant biomarkers in patients with ccRCC and may have a prognostic implication.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/genética , Neoplasias Renales/patología , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos , Aprendizaje Automático , Estudios RetrospectivosRESUMEN
BACKGROUND: Challenges remain in determining the most effective treatment strategies and identifying patients who would benefit from adjuvant or neoadjuvant therapy in renal cell carcinoma. The objective of this review is to provide a comprehensive overview of biomarkers in metastatic renal cell carcinoma (mRCC) and their utility in prediction of treatment response, prognosis, and therapeutic monitoring in patients receiving systemic therapy for metastatic disease. METHODS: A systematic literature search was conducted using the PubMed database for relevant studies published between January 2017 and December 2022. The search focused on biomarkers associated with mRCC and their relationship to immune checkpoint inhibitors, targeted therapy, and VEGF inhibitors in the adjuvant, neoadjuvant, and metastatic settings. RESULTS: The review identified various biomarkers with predictive, prognostic, and therapeutic monitoring potential in mRCC. The review also discussed the challenges associated with anti-angiogenic and immune-checkpoint monotherapy trials and highlighted the need for personalized therapy based on molecular signatures. CONCLUSION: This comprehensive review provides valuable insights into the landscape of biomarkers in mRCC and their potential applications in prediction of treatment response, prognosis, and therapeutic monitoring. The findings underscore the importance of incorporating biomarker assessment into clinical practice to guide treatment decisions and improve patient outcomes in mRCC.