Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Environ Manage ; 302(Pt A): 114026, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34731715

RESUMEN

In addition to the adsorption capability for organic compounds, granular activated carbon (GAC) can also serve as a good media for the growth of microbial communities in biofilters. Despite its potential, the application of BAC filtration for municipal wastewater treatment has been little addressed in the literature. In this context, this paper aimed to investigate BAC filtration as a post-treatment of anaerobic effluent in pilot scale and its performance in removing organic matter and turbidity. Removal efficiencies during the biofilters run times and along biofilters depth were also evaluated. Three BAC filters were evaluated under different operating conditions of filtration rates (from 13 to 32 m d-1) and empty bed contact time (EBCT) (from 45 to 112 min) during 170 days. The lowest filtration rate (13 m d-1) presented the best performance in terms of dissolved organic carbon (DOC) removal (68.2 ± 4.0%), leading to mean DOC effluent concentration of 6.8 ± 0,9 mg L-1. The BAC reached the stability of biological activity from the 63rd day of operation, however, the adsorption process was still occurring contributing to DOC removal. These DOC removals were higher than those results reported in the literature for BAC filters treating drinking water and municipal wastewater. The DOC removal efficiencies were maintained during the filter run times, showing the robustness of the system even after the interference caused by the backwashing process. BAC filtration was also capable of removing turbidity, with removal efficiencies between 84.5 ± 3.6% and 70.63 ± 6.8% depending on the filtration rate. The results indicated the capability of BAC systems to remove efficiently organic carbon and turbidity from effluents with high organic content, mean of 23.97 (±3.96) mg.L-1, and also valuable support to determine adequate operating parameters for BAC filters application in secondary effluent treatment, such as filtration rate (13 m d-1), EBCT (112 min), and detailed backwashing procedures.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico , Materia Orgánica Disuelta , Filtración , Contaminantes Químicos del Agua/análisis
2.
Water Sci Technol ; 84(5): 1270-1279, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34534122

RESUMEN

Peracetic acid (PAA) stands out as a safe and environmental-friendly oxidant and disinfectant which has been effectively used in wastewater treatment. Chemical oxygen demand (COD) is a very popular analysis in wastewater treatment; however, the interference of residual PAA on the COD measurement is still unknown. In this context, this study investigated the implications of applying the COD analysis in PAA-based treatment. Each 1 mg·L-1 of PAA increased the COD concentration around 13.5 mg O2·L-1. Residual PAA and hydrogen peroxide (H2O2) were efficiently neutralized by sodium metabisulfite (SMBS) at the optimal SMBS/PAA ratio of 10.2:1 in a wide pH range (5 to 9). The effect of PAA addition on the COD concentration was evaluated in different water matrices (potassium hydrogen phthalate and wastewater solutions). The COD results with the SMBS addition at optimal SMBS/PAA ratio were lower than the ones without it. It may happen due to the neutralization of residual H2O2/PAA and the complexity of the water matrices which can interfere in the COD results. This study discussed the impact of the residual H2O2/PAA neutralization before the COD analysis, and this investigation can be used as a practical guideline for the correct COD measurement in PAA-based treatment.


Asunto(s)
Ácido Peracético , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Desinfección , Peróxido de Hidrógeno/análisis
3.
J Environ Manage ; 254: 109825, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31733467

RESUMEN

Microalgae harvesting is one of the major bottlenecks for the production of high-value microalgal products on a large scale, which encourages investigations of harvesting methods with better cost-benefits. Among these harvesting techniques, flotation stands out as a promising method, however it is still minimally explored when compared to the sedimentation method. In this study, the pH modulation followed by dissolved air flotation (DAF) was tested as a harvesting method for Chlorella sorokiniana cultivated in wastewater. The main aims of this study were to optimize the operational parameters of coagulation (pH, velocity gradient, and mixing time) and flotation (recirculation rate), check their reproducibility and resilience with the variability of wastewater characteristics, and evaluate the final wastewater quality after treatment using an optimized harvesting method. Parameter optimization was carried out using the one-factor-at-a-time method. The optimal parameters were a velocity gradient of 500 s-1, mixing time of 30 s, pH 12, and 20% of recirculation rate. High efficiencies were obtained for C. sorokiniana removal (96.5-97.9%), making it a successful process. Moreover, the photobioreactor effluent quality was also improved significantly after microalgae harvesting, with high nutrient removal (88.6-95.1% of total Kjeldahl nitrogen and 91.8-98.3% of total phosphorus) and organic matter removal (80.5-86.8% of chemical oxygen demand). The results showed the pH modulation and DAF as an effective process for wastewater treatment and biomass harvesting. This study also indicated the importance of operational optimization, not studied until now, in which the achieved results could be potentially applied as practical guidelines for microalgae harvesting on a large scale.


Asunto(s)
Chlorella , Microalgas , Biomasa , Concentración de Iones de Hidrógeno , Reproducibilidad de los Resultados , Aguas Residuales
4.
J Environ Manage ; 268: 110693, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32510435

RESUMEN

The demand for systems that efficiently and sustainably recover value-added compounds and materials from waste streams is a major challenge. The use of wastewater as a source for recovery of carbon and nutrients is an attractive and sustainable alternative. In this study, anaerobically treated black water was treated in photobioreactors (PBRs) inoculated with Chlorella sorokiniana, and the process was investigated in terms of phosphorus and nitrogen removal, biomass growth, and the removal of pathogens. The consumption of bicarbonate (alkalinity) and acetate (volatile fatty acids) as carbon sources by microalgae was investigated. The average nutrient removal achieved was 66% for N and 74% for P. A high consumption of alkalinity (83%) and volatile organic acids (76%) was observed, which suggests that these compounds were used as a source of carbon. The biomass production was 73 mg L-1 day-1, with a mean biomass of 0.7 g L-1 at the end of the batch treatment. At the end of the experiments, a log removal/inactivation of 0.51 log for total coliforms and 2.73 log for Escherichia coli (E. coli) was observed. The configuration used, a flat-panel PBR operated in batch mode without CO2 supplementation, is a cost-effective and environmentally sustainable method for recovering of nutrients and production of algal biomass.


Asunto(s)
Chlorella , Microalgas , Biomasa , Escherichia coli , Nitrógeno , Nutrientes , Fósforo , Fotobiorreactores , Aguas Residuales , Agua
5.
Water Sci Technol ; 82(6): 1227-1236, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33055412

RESUMEN

Microalgae harvesting is a major hurdle for the production of high-value microalgal bioproducts on a large scale. Among harvesting techniques, pH-induced sedimentation stands out as an inexpensive and technically viable method. Nevertheless, there is little information available on the application of this method for microalgae cultivated in wastewater. In this context, the present study investigated the optimization of sedimentation parameters for Chlorella sorokiniana harvesting from wastewater. Parameter optimization was statistically determined by the response surface methodology. The optimal values included a velocity gradient of 250 s-1, mixing time of 10 seconds, and pH of 12, which enabled microalgae harvesting efficiencies of more than 97.8%. These optimal parameters also showed resilience through the physico-chemical variation of the photobioreactor effluent. Furthermore, wastewater quality improved significantly after microalgae harvesting. High removal was found for turbidity (97.9-98.3%), apparent color (92.2-97.2%), total Kjeldhal nitrogen (91.0-94.4%), and total phosphorus (92.8-98.6%). Centrifugation, as the dewatering method, and its operational parameters were also evaluated. Sedimentation followed by centrifugation increased the initial microalgae concentration by about 123 times. This study shows the importance of operational optimization and the results can be used as practical guidelines for microalgae harvesting on a large scale.


Asunto(s)
Chlorella , Microalgas , Concentración de Iones de Hidrógeno , Fotobiorreactores , Aguas Residuales
6.
Water Sci Technol ; 80(8): 1505-1511, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31961813

RESUMEN

Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09-1.49 kg COD m-3 d-1), in continuous operation mode, maintaining a stable organic matter removal.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Proyectos Piloto , Eliminación de Residuos Líquidos
7.
J Water Health ; 13(3): 811-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26322766

RESUMEN

More precise methods are needed to recover Giardia and Cryptosporidium (oo)cysts from wastewater in order to advance research related to their inactivation, removal, quantification, and species differentiation. This study applied different methods to recover the maximum number of (oo)cysts from wastewater samples using ColorSeed®. Immunomagnetic separation assisted in capturing oocysts mainly in samples with medium and low turbidity. A triple centrifugation method reached recovery rates of 85% and 20%, for Giardia cysts and Cryptosporidium oocysts, respectively, in raw wastewater, and 62.5 and 17.5% in secondary-treated effluent. For low turbidity-treated effluent, membrane filtration reached 67.5% recovery for Giardia cysts and 22.5% for Cryptosporidium oocysts. Simple, quick and low-cost methods do not involve much handling of the samples and could be useful, particularly in developing countries.


Asunto(s)
Cryptosporidium/aislamiento & purificación , Giardia/aislamiento & purificación , Oocistos/citología , Aguas Residuales/parasitología , Purificación del Agua/métodos , Filtración , Separación Inmunomagnética
8.
Artículo en Inglés | MEDLINE | ID: mdl-26301847

RESUMEN

This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L(-1), followed by chlorine doses of 10, 20 and 30 mg.L(-1), respectively. After the sequential ozone/chlorine process, the mean reduction in chemical oxygen demand ranged from 9 to 37%. Total coliform inactivation ranged from 1.59 to 3.73 log10, and E. coli was always <1 CFU 100 mL(-1). Ozonation resulted in the formation of aldehydes, which were not significantly impacted by the subsequent chlorine dose (P ≤ 0.05).


Asunto(s)
Cloro/farmacología , Desinfección/métodos , Ozono/farmacología , Aguas del Alcantarillado , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Brasil , Cloro/química , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Ozono/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Microbiología del Agua , Purificación del Agua/métodos
9.
Ecotoxicology ; 23(9): 1803-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25213288

RESUMEN

The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Desinfectantes/toxicidad , Animales , Brasil , Chironomidae/efectos de los fármacos , Cloro/toxicidad , Cladóceros/efectos de los fármacos , Desinfección , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Ozono/toxicidad , Ácido Peracético/toxicidad , Aguas del Alcantarillado , Pruebas de Toxicidad , Rayos Ultravioleta , Aguas Residuales/química , Pez Cebra
10.
Environ Sci Pollut Res Int ; 30(2): 2800-2812, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35941497

RESUMEN

The algal organic matter (AOM) is a problem in water treatment. Although the adsorption process is extensively applied to drinking water treatment, little information is known about the potential of new adsorbents to remove AOM. Herein, this work evaluated the removal of AOM and its main compounds (dissolved organic carbon (DOC), carbohydrate, and protein) by new adsorbents-mesoporous silica (SBA-16), graphene oxide material from citric acid (CA), and sugar (SU), and a composite of CA immobilized on sand (GSC). In general, the removal efficiencies followed the order of SBA-16 > CA > SU or GSC for DOC, carbohydrate, and protein. At environmental condition (5 mg DOC·L-1 and pH 8), high removals were reported for SBA-16 (88.8% DOC, 80.0% carbohydrate, and 99.6% protein) and CA (70.0% DOC, 66.7% carbohydrate, and 89.7% protein), while moderate removals were found for SU (60.5% DOC, 47.9% carbohydrate, and 66.5% protein) and GSC (67.4% DOC, 60.8% carbohydrate, and 57.4% protein). Based on these results, further analyses were done with SBA-16 and CA. Both adsorbents' efficiencies decayed with the pH increment of the test water. Disinfection by-products reductions found using SBA-16 - trihalomethanes (58.2 to 94.7%) and chloral hydrate (48.7 to 78.8%) - were higher than the ones using CA-trihalomethanes (45.2 to 82.4%) and chloral hydrate (40.1 to 70.8%). This study showed the potential of applying these adsorbents for AOM removal, and further investigations are suggested to increase the adsorption capacity of these adsorbents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Hidrato de Cloral , Carbohidratos , Trihalometanos/análisis , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
11.
Toxics ; 11(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37624194

RESUMEN

Eutrophication in water reservoirs releases algal organic matter (AOM), which is an important precursor of disinfection by-products (DBPs) formed during water treatment. Chlorella sorokiniana is a microalgae which flourishes under conditions of high light intensity and temperature, thus its prevalence in algal blooms is expected to increase with climate change. However, Chlorella sorokiniana AOM has not been previously investigated as a DBP precursor. In this context, this study evaluated the effect of AOM concentration, humic acid (HA), and pH on DBP formation from chlor(am)ination of AOM Chlorella sorokiniana. DBP yields determined by linear regression for trichloromethane (TCM) and chloral hydrate (CH) were 57.9 and 46.0 µg·mg DOC-1 in chlorination, while the TCM, CH, dichloroacetonitrile (DCAN), 1,1,1-trichloropropanone (1,1,1-TCP), and chloropicrin (CPN) concentrations were 33.6, 29.8, 16.7, 2.1, and 1.2 µg·mg DOC-1 in chloramination. Chloramination reduced the formation of TCM and CH but increased CPN, DCAN, and 1,1,1-TCP yields. AOM Chlorella sorokiniana showed a higher DBP formation than 9 of 11 algae species previously investigated in the literature. At basic pH, the concentration of TCM increased while the concentration of other DBP classes decreased. Bromide was effectively incorporated into the AOM structure and high values of bromine incorporation factor were found for THM (1.81-1.89) and HAN (1.32) at 1.5 mg Br·L-1. Empirical models predicted successfully the formation of THM and HAN (R2 > 0.86). The bromide concentration had more impact in the model on the DBP formation than AOM and HA. These results provide the first insights into the DBP formation from AOM chlor(am)ination of Chlorella sorokiniana.

12.
Environ Technol ; 43(7): 962-970, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32799634

RESUMEN

Municipal wastewater is a source of pathogenic protozoan (oo)cysts and may play a significant role in spreading waterborne diseases. This scenario becomes more critical as treated sewage from municipal wastewater treatment plants (WWTP) is discharged into springs, which are often used for water supply, irrigation, recreation and, further downstream, indirect potable reuse, quite common in Brazil. This study aimed to elucidate, regarding microbiological quality, the performance of a full-scale WWTP, consisting of preliminary treatment, upflow anaerobic sludge blanket (UASB) reactor, activated sludge system and ultraviolet (UV) radiation disinfection. Pathogenic protozoa (Giardia spp. cysts and Cryptosporidium spp. oocysts), as well as microbiological indicators (Escherichia coli and Clostridium perfringens), were evaluated in terms of their removal. In addition, (oo)cyst viability and fluorescence reduction were assessed. By using the data obtained from this research, the prevalence of infection estimated for the population served by the WWTP was between 7.4% and 14.8% for giardiasis, and between 0.055% and 0.11% for cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Quistes , Purificación del Agua , Animales , Criptosporidiosis/epidemiología , Fluorescencia , Giardia , Oocistos
13.
Environ Sci Pollut Res Int ; 29(24): 35800-35810, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35061173

RESUMEN

Algal organic matter (AOM) in water reservoirs is a worldwide concern for drinking water treatment; once it is one of the main precursors for disinfection by-products formation (DBPs). In this context, this study investigated the ecotoxicity of DBPs from chlorination of AOM to Ceriodaphnia silvestrii and Daphnia similis (Crustacea, Cladocera). The bioassays evaluated three scenarios, including the AOM extracted from Chlorella sorokiniana, the quenching condition used in the tests, and the DBPs formed after the chlorination of the two test waters with AOM (with and without bromide presence). The results showed that AOM has no toxic effects for the tested species under typical environmental concentration (5 mg∙L-1). However, since AOM is a potential precursor of DBPs, the toxicity of two test waters (TW-1 and TW-2) after the chlorination process (25 mg Cl2·L-1, for 7 days, at 20 °C) was tested. The sample with higher toxicity to the tested species was TW-1, in which chloroform and chloral hydrate were quantified (615 and 267 µg∙L-1, respectively). However, TW-2 showed lower concentration of chloroform and chloral hydrate (260 and 157 µg∙L-1, respectively), although bromodichloromethane, dibromochloromethane, and bromoform were also detected (464, 366, and 141 µg∙L-1, respectively). Although free chlorine is highly toxic to the tested species, the quenching conditions also affected the organisms' survival due to the use of ascorbic acid and the presence of reaction intermediates. Nonetheless, both species were more affected by TW-1 and TW-2 than the quenching condition. These results endorse the importance of removing the AOM before the disinfection process to avoid the formation of DBPs. In addition, ecotoxicological analyses could provide a more comprehensive assessment of water quality, especially considering the challenges of quantifying DBPs and other emerging contaminants.


Asunto(s)
Chlorella , Cladóceros , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Bromuros , Hidrato de Cloral , Cloro/análisis , Cloroformo/análisis , Daphnia , Desinfectantes/toxicidad , Desinfección , Halogenación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
14.
Environ Technol ; 43(13): 2059-2068, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33334260

RESUMEN

The discharge of raw wastewater into the environment can be a contamination source of Giardia spp. cysts and Cryptosporidium spp. oocysts. The UASB (Upflow Anaerobic Sludge Blanket) reactor is the most popular technology applied for wastewater treatment in Brazil, nevertheless there is little information concerning its capacity for (oo)cyst removal. In this context, this study investigated the occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts by three different UASB reactors (i.e. Reactor A, B, and C) treating different wastewater types. In the wastewater influent, the concentration varied from 493.3 to 14,000 cysts·L-1 for Giardia spp. and from 'not detected' to 53.3 oocysts·L-1 for Cryptosporidium spp.. The (oo)cyst concentration increased after the anaerobic treatment in Reactors A and B, while Giardia spp. log-removal of 0.5 ± 0.2 was found in Reactor C. The increment in (oo)cyst concentration may happened due to the inefficacy for (oo)cyst removal by the specific UASB reactor and/or due to the reduction of matrix interference for reactor effluent samples in the detection method. The results suggest that hydraulic retention time (HRT) may be the key parameter for Giardia spp. removal by the UASB reactor. Furthermore, no parameter analysed (physical-chemical and indicator microorganisms) showed a common correlation with the (oo)cyst concentration in the three UASB reactors. Considering that official data of cryptosporidiosis and giardiasis cases are rarely reported in Brazil, monitoring Giardia spp. cysts and Cryptosporidium spp. oocysts in wastewater could be an alternative to estimate the occurrence of diseases in the served population.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Quistes , Anaerobiosis , Animales , Brasil , Criptosporidiosis/epidemiología , Giardia , Oocistos , Aguas Residuales
15.
Chemosphere ; 286(Pt 3): 131767, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34399254

RESUMEN

The efficiency of microalgae harvesting on the removal of Giardia spp. cysts, Cryptosporidium spp. oocysts, total coliforms, Escherichia coli, Enterococcus spp. and Clostridium spp. was assessed in lab-scale experiments (Jartest and Flotatest) using effluent from a flat panel photobioreactor used for Chlorella sorokiniana cultivation. Three harvesting methods were evaluated: (1) flocculation induced by pH modulation followed by sedimentation (pH-SED), (2) flocculation induced by pH modulation followed by dissolved air flotation (pH-DAF), and (3) coagulation using an organic coagulant (Tanfloc SG) followed by dissolved air flotation (Coag-DAF). The results indicated that the three harvesting methods were efficient in removing protozoan (oo)cysts and bacteria, achieving percentages of removal higher than 97% for all the analyzed pathogens. Among the three methods, pH-SED showed the best removal performance: 99.60% (2.5 log) for Giardia spp. cysts, 100% (>6.3 log) for total coliforms, 100% (>4.6 log) for Escherichia coli, 100% (>5.8 log) for Enterococcus spp. and 99.96% (3.6 log) for Clostridium spp. Clostridium spp. seemed to be more tolerant to the harvesting methods than the other groups of bacteria analyzed in the study, and its presence was positively correlated to the presence of Giardia spp. cysts.


Asunto(s)
Chlorella , Criptosporidiosis , Cryptosporidium , Quistes , Microalgas , Animales , Bacterias , Giardia , Oocistos
16.
Environ Technol ; 32(11-12): 1401-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21970182

RESUMEN

Water disinfection assays were carried out using ozone and chlorine in non-sequential steps--the individual method--and in sequential steps--the combined ozone/chlorine method. Escherichia coli strain ATCC 11229 was used as the indicator microorganism. For the assays using the individual method, the applied dosages of ozone were 2.0, 3.0 and 5.0 mg/L, and 2.0 and 5.0 mg/L of chlorine were used. For the assays applying the combined method, the dosages (dosage combination) were, in mg/L: 2.0 O3 + 2.0 Cl, 3.0 O3 + 2.0 Cl2, 5.0 O3 + 2.0 Cl2 and 2.0 O3 + 5.0 Cl2. The applied contact times were 5, 10, 15 and 20 minutes for the individual method as well as for the combined method. For all used dosages and contact times, E. coli inactivation was superior to the inactivation obtained in the individual method, indicating the occurrence of synergism for E. coli inactivation in the combined method.


Asunto(s)
Cloro/farmacología , Desinfectantes/farmacología , Escherichia coli/efectos de los fármacos , Ozono/farmacología , Purificación del Agua/métodos , Cloro/química , Desinfectantes/química , Viabilidad Microbiana/efectos de los fármacos , Ozono/química , Microbiología del Agua , Purificación del Agua/instrumentación
17.
Environ Technol ; 42(1): 141-147, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31136251

RESUMEN

Lab-scale studies were carried out to investigate the efficiency of dissolved air flotation (DAF) for the removal of Giardia spp. cysts and Cryptosporidium spp. oocysts from anaerobic effluent from the pilot UASB reactor. Raw wastewater, UASB and DAF effluent samples were collected weekly and protozoan (oo)cysts were concentrated using IMS followed by protozoa detection using immunofluorescense assay (IFA). The number of Cryptosporidium spp. oocysts in the raw wastewater was always lower than that of Giardia spp. cysts with 28-33 oocysts L-1 and 3177-4267 cysts L-1, respectively. Log10 removal of Giardia cysts utilising polyaluminium chloride (PACl) was higher than that with FeCl3, but no statistically significant difference between the two coagulants was observed. Cryptosporidium was absent in most of the treated effluent samples. The results indicate that DAF reached more than 2 log of cyst removal. In addition, the results demonstrated that these parasites are prevalent in the study area and E. coli and total coliforms were not good indicator microorganisms in terms of cyst and oocysts numbers.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Quistes , Anaerobiosis , Animales , Escherichia coli , Giardia , Oocistos
18.
Bioresour Technol ; 311: 123508, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32416494

RESUMEN

In this study, a novel harvesting emulsion (HEM) consisting of cooking oil in an aqueous solution of cetyltrimethylammonium bromide (CTAB) was tested for the harvesting of a technologically important microalga, Chlorella vulgaris. The influence of HEM dose, biomass and bovine serum albumin (BSA) (model interferer compound) on harvesting efficiency (E) were studied. The HEM E was over 90% at pH 10 (0.33% (v/v) cooking oil, 6.7 mg/L of CTAB) and 12 (0.13% (v/v) cooking oil, 2.7 mg/L of CTAB). Harvesting efficiencies at pH 4 and 7 were < 73.5% due to the absence of precipitate formation. Bovine serum albumin (10 mg/L) increased the HEM dose necessary to achieve E ˃ 90% by 1.2 (pH 10), and 3 fold (pH 12). By manipulating the dose of HEM and pH, the method of harvesting (flocculation/sedimentation or flotation) was adjustable depending on the technological requirements.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Culinaria , Floculación , Tensoactivos , Agua
19.
Environ Technol ; 40(26): 3492-3501, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29813004

RESUMEN

The protozoa Giardia and Cryptosporidium are associated with numerous outbreaks of waterborne diseases worldwide. This study aimed to evaluate the concentration of Giardia spp. cysts, Cryptosporidium spp. oocysts, total coliforms, Escherichia coli and Clostridium perfringens in raw wastewater and their removals at UASB reactor, activated sludge system (operated conventionally and extended aeration) and slow sand filtration. Giardia spp. cysts were present in 100% and Cryptosporidium spp. oocysts in 31.4% of the analysed wastewater samples. The UASB reactor followed by activated sludge system obtained approximately 2.0 log of removal for total coliforms and E. coli, whereas for C. perfringens and Giardia spp. cysts, it obtained 1 log. There was a high percentage of (oo)cysts still viable after secondary treatment, therefore, the risk of contamination of water courses and, consequently, for public health is considerable. However, after tertiary filtration, no (oo)cysts were found in any of the filtered effluent samples, being a good option for future reuse. Seasonal variations did not affect the concentrations and removals of microorganisms observed. Lack of correlations of concentrations of indicator microorganisms and (oo)cysts raise caveats and doubts regarding the true microbiological quality when using only indicator microorganisms.


Asunto(s)
Cryptosporidium , Quistes , Animales , Escherichia coli , Giardia , Oocistos , Aguas Residuales
20.
Bioresour Technol ; 286: 121352, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31030067

RESUMEN

Amongst harvesting processes, alkaline flocculation stands out as a technically feasible and low cost method. The interference of model wastewater components with alkaline flocculation of Chlorella sorokiniana (pH 8-12), induced by calcium phosphate (CaP) precipitates, was evaluated. Between the compounds tested, inorganic nitrogen, sodium alginate, salinity and algal organic matter had no effect on flocculation efficiency (FE). The negative effect of humic acids, sodium dodecyl sulphate and alkalinity on FE was partial. Bovine serum albumin and bacterial organic matter (BOM) of Escherichia coli showed the strongest disruption of FE. The impact of BOM can be explained by the high protein content (65% of total organic carbon). Proteins, negatively charged at alkaline pH, interrupt microalgae flocculation by preferentially interacting with positively charged CaP precipitates. The simultaneous effects of multiple substances were tested to simulate real wastewater. The results confirm the need to investigate the composition of wastewater prior to alkaline flocculation.


Asunto(s)
Chlorella , Microalgas , Biomasa , Fosfatos de Calcio , Floculación , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA