Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2021): 20232681, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654643

RESUMEN

Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance. We identified six adversities that reduced juvenile survival in the first year of life, though only one-birth date-had continued independent effects on adult lifespan. We then built a weighted early-life adversity (wELA) index integrating the sum of adversities and their effect sizes. Greater weighted early-life adversity predicted shorter adult lifespans in males and females, but a naturally occurring food boom in the second year of life ameliorated this effect. Experimental food supplementation did not replicate this pattern, despite increasing lifespan, indicating that the buffering effect of a future food boom may hinge on more than an increase in available calories. Our results suggest a non-deterministic role of early-life conditions for later-life phenotype, highlighting the importance of evaluating the consequences of early-life adversity in the context of an animal's entire life course.


Asunto(s)
Longevidad , Sciuridae , Animales , Masculino , Femenino , Sciuridae/fisiología
2.
Oecologia ; 204(1): 161-172, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180565

RESUMEN

Many studies assume that it is beneficial for individuals of a species to be heavier, or have a higher body condition index (BCI), without accounting for the physiological relevance of variation in the composition of different body tissues. We hypothesized that the relationship between BCI and masses of physiologically important tissues (fat and lean) would be conditional on annual patterns of energy acquisition and expenditure. We studied three species with contrasting ecologies in their respective natural ranges: an obligate hibernator (Columbian ground squirrel, Urocitellus columbianus), a facultative hibernator (black-tailed prairie dog, Cynomys ludovicianus), and a food-caching non-hibernator (North American red squirrel, Tamiasciurus hudsonicus). We measured fat and lean mass in adults of both sexes using quantitative magnetic resonance (QMR). We measured body mass and two measures of skeletal structure (zygomatic width and right hind foot length) to develop sex- and species-specific BCIs, and tested the utility of BCI to predict body composition in each species. Body condition indices were more consistently, and more strongly correlated, with lean mass than fat mass. The indices were most positively correlated with fat when fat was expected to be very high (pre-hibernation prairie dogs). In all cases, however, BCI was never better than body mass alone in predicting fat or lean mass. While the accuracy of BCI in estimating fat varied across the natural histories and annual energetic patterns of the species considered, measuring body mass alone was as effective, or superior in capturing sufficient variation in fat and lean in most cases.


Asunto(s)
Composición Corporal , Alimentos , Humanos , Masculino , Femenino , Animales , Composición Corporal/fisiología , Sciuridae/fisiología , Especificidad de la Especie
3.
Proc Biol Sci ; 290(1990): 20221569, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629099

RESUMEN

While cooperative interactions among kin are a key building block in the societies of group-living species, their importance for species with more variable social environments is unclear. North American red squirrels (Tamiasciurus hudsonicus) defend individual territories in dynamic neighbourhoods and are known to benefit from living among familiar conspecifics, but not relatives. However, kin-directed behaviours may be restricted to specific genealogical relationships or strongly mediated by geographical distance, masking their influence at broader scales. Using distance between territories as a proxy for the ability of individuals to interact, we estimated the influence of primary kin (parents, offspring, siblings) on the annual survival and reproductive success of red squirrels. This approach revealed associations between fitness and access to kin, but only for certain genealogical relationships and fitness components. For example, females had enhanced annual survival when living closer to their daughters, though the reverse was not true. Most surprising was the finding that males had higher annual reproductive success when living closer to their father, suggesting possible recognition and cooperation among fathers and sons. Together, these findings point to unexpected nuance in the fitness consequences of kinship dynamics for a species that is territorial and largely solitary.


Asunto(s)
Hermanos , Territorialidad , Humanos , Animales , Masculino , Femenino , Sciuridae , Reproducción , Medio Social , Conducta Social
4.
Horm Behav ; 150: 105311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36707334

RESUMEN

Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Animales , Fenotipo , Ecología , Adaptación Fisiológica , Evolución Biológica
5.
J Anim Ecol ; 92(1): 207-221, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385608

RESUMEN

Territories are typically defined as spatially exclusive areas that are defended against conspecifics. Given the spatial nature of territoriality, it is inherently density dependent, but the economics of territoriality also depend on the distribution and abundance of defended resources. Our objectives were to assess the effects of changing population density and food availability on individually based territorial phenotypes. We developed a novel analytical framework that bridges spatially explicit territories with social network analysis to model density-dependent territorial phenotypes. Using the outputs from our data pipeline, we modelled plasticity in territory size and territory intrusion rates in a long-term study population of North American red squirrels Tamiasciurus hudsonicus. Red squirrels defend year-round territories around a central hoard (midden) of white spruce Picea glauca cones. Importantly, white spruce is a masting species that produces large cone crops every 4-7 years (i.e. mast years) in our study area interspersed with non-mast years when few cones are produced. In the spring following mast years, populations are approximately double in size, but are lower in the spring of non-mast years. We predicted that territory size and intrusion rates would decrease as resource abundance, and consequently population density, increased. By contrast, as resource abundance decreased via depletion, and therefore density decreased, territories should increase in size and intrusions should also increase. As we expected, individual territory size and territorial intrusions were negatively density dependent, such that increased density after mast years resulted in smaller territories and fewer intrusions. When considering between-individual variation in plasticity across a density gradient, individuals responded differently to changes in population density within their lifetime. Our results show that territory size and intrusion rates display negative density dependence. When food becomes available in the autumn of a mast year and density in spring of the following year increases, territories shrink in size to effectively a small area around the midden. While our findings for red squirrels are unique compared to other systems, they serve as a reminder that the direction and strength of fundamental ecological relationships can depend on the nature of the system.


Asunto(s)
Análisis de Redes Sociales , Territorialidad , Animales , Densidad de Población , Sciuridae
6.
Proc Biol Sci ; 289(1983): 20221022, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168765

RESUMEN

Animals cope with environmental perturbations through the stress response, a set of behavioural and physiological responses aimed to maintain and/or return to homeostasis and enhance fitness. Vertebrate neuroendocrine axis activation in response to environmental stressors can result in the secretion of glucocorticoids (GCs), whose acute increases may be adaptive, while chronic elevation may be detrimental. Invasive grey squirrels (Sciurus carolinensis) act as a stressor eliciting elevation of GCs in native red squirrels (Sciurus vulgaris). Here we used 6-year data of variation in faecal glucocorticoid metabolite (FGM) concentrations following invasion by grey squirrels in three red squirrel populations, to identify if red squirrels showed physiological habituation to this stressor. The decrease in FGMs over time was more pronounced shortly after invasion and at high densities of grey squirrels while it decreased less strongly and was no longer influenced by the invader density as time since invasion elapsed. At the individual level, FGMs also decreased more markedly as each red squirrel experienced prolonged contact with the invader. Our study provides compelling new data suggesting that native species in the wild can habituate to prolonged contact with invasive species, showing that they may avoid the potentially harmful effects of chronic elevations in GCs.


Asunto(s)
Glucocorticoides , Habituación Psicofisiológica , Animales , Heces , Especies Introducidas , Sciuridae
7.
Glob Chang Biol ; 28(9): 3066-3082, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170154

RESUMEN

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.


Aún existen importantes vacíos en la comprensión de la respuesta reproductiva de las plantas al cambio medioambiental, en parte, porque su monitoreo en especies de plantas longevas requiere una observación directa durante muchos años, y estos conjuntos de datos rara vez han estado disponibles. Aquí presentamos a MASTREE +, una base de datos que recopila series de tiempo de la reproducción de las plantas de todo el planeta, poniendo a disposición estos datos de libre acceso para la comunidad científica. MASTREE + incluye 73.828 puntos de observación de la reproducción anual georreferenciados (ej. conteos de semillas y frutos) en poblaciones de plantas perennes en todo el mundo. Estas observaciones consisten en 5971 series temporales a nivel de población provenientes de 974 especies en 66 países. La mediana de la duración de las series de tiempo es de 10 años (media = 12.4 años) y el conjunto de datos incluye 1.122 series de al menos dos décadas (≥20 años de observaciones). Para un subconjunto de especies bien estudiadas, MASTREE +incluye un amplio conjunto de series temporales replicadas en gradientes geográficos y climáticos. Describimos el conjunto de datos de acceso abierto disponible como un archivo.csv y presentamos una aplicación web asociada para la exploración de datos. MASTREE+ proporcionará la base para mejorar la comprensión sobre la respuesta reproductiva de plantas longevas al cambio medioambiental. Además, MASTREE+ facilitará los avances en la investigación de la ecología y la evolución de las estrategias reproductivas en plantas perennes y el papel de la reproducción vegetal como determinante de la dinámica de ecosistemas.


Asunto(s)
Ecosistema , Reproducción , Ecología , Plantas , Semillas/fisiología
8.
Horm Behav ; 144: 105204, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35689971

RESUMEN

The effect of the social environment on individual state or condition has largely focused on glucocorticoid levels (GCs). As metabolic hormones whose production can be influenced by nutritional, physical, or psychosocial stressors, GCs are a valuable (though singular) measure that may reflect the degree of "stress" experienced by an individual. Most work to date has focused on how social rank influences GCs in group-living species or how predation risk influences GCs in prey. This work has been revealing, but a more comprehensive assessment of the social environment is needed to fully understand how different features of the social environment influence GCs in both group living and non-group living species and across life history stages. Just as there can be intense within-group competition among adult conspecifics, it bears appreciating there can also be competition among siblings from the same brood, among adult conspecifics that do not live in groups, or among heterospecifics. In these situations, dominance hierarchies typically emerge, albeit, do dominants or subordinate individuals or species have higher GCs? We examine the degree of support for hypotheses derived from group-living species about whether differential GCs between dominants and subordinates reflect the "stress of subordination" or "costs of dominance" in these other social contexts. By doing so, we aim to test the generality of these two hypotheses and propose new research directions to broaden the lens that focuses on social hierarchies and GCs.


Asunto(s)
Glucocorticoides , Predominio Social , Procesos de Grupo , Jerarquia Social , Humanos , Medio Social
9.
Horm Behav ; 140: 105127, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121301

RESUMEN

Free-living animals cope with environmental stressors through physiological and behavioural responses. According to the unidimensional model, these responses are integrated within a coping style: proactive individuals (bold, active-explorative and social) have a lower hypothalamic-pituitary-adrenal (HPA) axis reactivity than reactive ones (shy, less active-explorative, less social). These associations may change when individuals are exposed to human-induced rapid environmental change (HIREC), such as the introduction of invasive alien species (IAS). Here, we studied Eurasian red squirrels to investigate the relationship between personality traits and one integrated measure of HPA axis activity, both in areas uncolonized (natural populations) and colonized by an IAS, the Eastern grey squirrel (invaded populations). We expected an association between physiological and behavioural responses, and that activity, exploration and social tendency would covary, forming a behavioural syndrome in natural populations, while competition with the IAS was predicted to disrupt these associations. We used faecal glucocorticoid metabolites (FGMs) as an integrated measure of adrenocortical activity, and measured the levels of four personality traits (exploration, activity, activity-exploration and social tendency) with an open field test and a mirror image stimulation test. We found no correlation between FGMs and personality traits, neither in natural nor invaded populations. However, we found correlations among personality traits in areas without interspecific competition, indicating a behavioural syndrome, which was disrupted in invaded populations. This is one of the few studies showing that an IAS, acting as an environmental stressor, alters a native species' behavioural syndrome, but does not influence its coping style.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Especies Introducidas , Adaptación Psicológica , Animales , Sistema Hipófiso-Suprarrenal , Sciuridae
10.
Horm Behav ; 146: 105262, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191397

RESUMEN

Evolutionary endocrinology aims to understand how natural selection shapes endocrine systems and the degree to which endocrine systems themselves can induce phenotypic responses to environmental changes. Such responses may be specialized in that they reflect past selection for responsiveness only to those ecological factors that ultimately influence natural selection. Alternatively, endocrine responses may be broad and generalized, allowing organisms to cope with a variety of environmental changes simultaneously. Here, we empirically tested whether the endocrine response of female North American red squirrels (Tamiasciurus hudsonicus) was specialized or generalized. We first quantified the direction and magnitude of natural selection acting on three female life history traits (parturition date, litter size, offspring postnatal growth rate) during 32 years of fluctuations in four potential ecological agents of selection (food availability, conspecific density, predator abundance, and temperature). Only three of the four variables (food, density, and predators) affected patterns of natural selection on female life history traits. We then quantified fecal glucocorticoid metabolites (FGMs) across 7 years and found that all four environmental variables, regardless of their effects on patterns of selection, were associated with glucocorticoid production. Our results provide support for a generalized, rather than specific, glucocorticoid response to environmental change that can integrate across multiple co-occurring environmental stressors.


Asunto(s)
Glucocorticoides , Selección Genética , Animales , Embarazo , Femenino , Sciuridae/fisiología , Evolución Biológica , Tamaño de la Camada/fisiología
11.
J Hered ; 113(1): 69-78, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34679173

RESUMEN

When resources are limited, mean fitness is constrained and competition can cause genes and phenotypes to enhance an individual's own fitness while reducing the fitness of their competitors. Negative social effects on fitness have the potential to constrain adaptation, but the interplay between ecological opportunity and social constraints on adaptation remains poorly studied in nature. Here, we tested for evidence of phenotypic social effects on annual fitness (survival and reproductive success) in a long-term study of wild North American red squirrels (Tamiasciurus hudsonicus) under conditions of both resource limitation and super-abundant food resources. When resources were limited, populations remained stable or declined, and there were strong negative social effects on annual survival and reproductive success. That is, mean fitness was constrained and individuals had lower fitness when other nearby individuals had higher fitness. In contrast, when food resources were super-abundant, populations grew and social constraints on reproductive success were greatly reduced or eliminated. Unlike reproductive success, social constraints on survival were not significantly reduced when food resources were super-abundant. These findings suggest resource-dependent social constraints on a component of fitness, which have important potential implications for evolution and adaptation.


Asunto(s)
Reproducción , Sciuridae , Adaptación Fisiológica , Animales , Fenotipo , Sciuridae/genética
12.
J Exp Biol ; 224(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33795416

RESUMEN

As a response to environmental cues, maternal glucocorticoids (GCs) may trigger adaptive developmental plasticity in the physiology and behavior of offspring. In North American red squirrels (Tamiasciurus hudsonicus), mothers exhibit increased GCs when conspecific density is elevated, and selection favors more aggressive and perhaps more active mothers under these conditions. We tested the hypothesis that elevated maternal GCs cause shifts in offspring behavior that may prepare them for high-density conditions. We experimentally elevated maternal GCs during gestation or early lactation. We measured two behavioral traits (activity and aggression) in weaned offspring using standardized behavioral assays. Because maternal GCs may influence offspring hypothalamic-pituitary-adrenal (HPA) axis dynamics, which may in turn affect behavior, we also measured the impact of our treatments on offspring HPA axis dynamics (adrenal reactivity and negative feedback), and the association between offspring HPA axis dynamics and behavior. Increased maternal GCs during lactation, but not gestation, slightly elevated activity levels in offspring. Offspring aggression and adrenal reactivity did not differ between treatment groups. Male, but not female, offspring from mothers treated with GCs during pregnancy exhibited stronger negative feedback compared with those from control mothers, but there were no differences in negative feedback between lactation treatment groups. Offspring with higher adrenal reactivity from mothers treated during pregnancy (both controls and GC-treated) exhibited lower aggression and activity. These results suggest that maternal GCs during gestation or early lactation alone may not be a sufficient cue to produce substantial changes in behavioral and physiological stress responses in offspring in natural populations.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Animales , Femenino , Glucocorticoides , Humanos , Masculino , Conducta Materna , Embarazo , Sciuridae , Estrés Fisiológico , Estados Unidos
13.
Ecol Lett ; 23(3): 430-438, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31833181

RESUMEN

Dispersal is nearly universal; yet, which sex tends to disperse more and their success thereafter depends on the fitness consequences of dispersal. We asked if lifetime fitness differed between residents and immigrants (successful between-population dispersers) and their offspring using 29 years of monitoring from North American red squirrels (Tamiasciurus hudsonicus) in Canada. Compared to residents, immigrant females had 23% lower lifetime breeding success (LBS), while immigrant males had 29% higher LBS. Male immigration and female residency were favoured. Offspring born to immigrants had 15-43% lower LBS than offspring born to residents. We conclude that immigration benefitted males, but not females, which appeared to be making the best of a bad lot. Our results are in line with male-biased dispersal being driven by local mate competition and local resource enhancement, while the intergenerational cost to immigration is a new complication in explaining the drivers of sex-biased dispersal.


Asunto(s)
Emigrantes e Inmigrantes , Reproducción , Cruzamiento , Canadá , Femenino , Humanos , Masculino
14.
J Exp Biol ; 223(Pt 1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31796605

RESUMEN

Elevations in glucocorticoid (GC) levels in breeding females may induce adaptive shifts in offspring life histories. Offspring produced by mothers with elevated GCs may be better prepared to face harsh environments, where a faster pace of life is beneficial. We examined how experimentally elevated GCs in pregnant or lactating North American red squirrels (Tamiasciurus hudsonicus) affected offspring postnatal growth, structural size and oxidative stress levels (two antioxidants and oxidative protein damage) in three different tissues (blood, heart and liver) and liver telomere lengths. We predicted that offspring from mothers treated with GCs would grow faster but would also have higher levels of oxidative stress and shorter telomeres, which may predict reduced longevity. Offspring from mothers treated with GCs during pregnancy were 8.3% lighter around birth but grew (in body mass) 17.0% faster than those from controls, whereas offspring from mothers treated with GCs during lactation grew 34.8% slower than those from controls and did not differ in body mass around birth. Treating mothers with GCs during pregnancy or lactation did not alter the oxidative stress levels or telomere lengths of their offspring. Fast-growing offspring from any of the treatment groups did not have higher oxidative stress levels or shorter telomere lengths, indicating that offspring that grew faster early in life did not exhibit oxidative costs after this period of growth. Our results indicate that elevations in maternal GCs may induce plasticity in offspring growth without long-term oxidative costs to the offspring that might result in a shortened lifespan.


Asunto(s)
Glucocorticoides/metabolismo , Estrés Oxidativo , Sciuridae/fisiología , Acortamiento del Telómero , Animales , Femenino , Masculino , Sciuridae/crecimiento & desarrollo
15.
J Anim Ecol ; 89(11): 2397-2414, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32929740

RESUMEN

Long-term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context. Many previous studies have only investigated life-history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness-relevant traits to better understand their population-level responses to those environmental fluctuations. For the past 32 years, we have conducted a long-term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi-year field experiments to examine the physiological and life-history responses of individual red squirrels to fluctuations in food abundance and conspecific density. Our long-term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change. As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life-history plasticity, as does experimental food supplementation. Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life-history plasticity. Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life-history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology. We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life-history plasticity.


Asunto(s)
Animales Salvajes , Cola (estructura animal) , Animales , Canadá , Sciuridae , Estados Unidos , El Yukón
16.
J Anim Ecol ; 89(6): 1408-1418, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307710

RESUMEN

Juvenile survival to first breeding is a key life-history stage for all taxa. Survival through this period can be particularly challenging when it coincides with harsh environmental conditions such as a winter climate or food scarcity, leading to highly variable cohort survival. However, the small size and dispersive nature of juveniles generally make studying their survival more difficult. In territorial species, a key life-history event is the acquisition of a territory. A territory is expected to enhance survival, but how it does so is not often identified. We tested how the timing of territory acquisition influenced the winter survival of juvenile North American red squirrels Tamiasciurus hudsonicus, hereafter red squirrels, and how the timing of this event mediated the sources of mortality. We hypothesized that securing a territory prior to when food resources become available would reduce juvenile susceptibility to predation and climatic factors overwinter. Using 27 years of data on the survival of individually marked juvenile red squirrels, we tested how the timing of territory acquisition influenced survival, whether the population density of red squirrel predators and mean temperature overwinter were related to individual survival probability, and if territory ownership mediated these effects. Juvenile red squirrel survival was lower in the years of high predator abundance and in colder winters. Autumn territory owners were less susceptible to lynx Lynx canadensis and possibly mustelid Mustela and Martes spp., predation. Autumn territory owners had lower survival in colder winters, but surprisingly non-owners had higher survival in cold winters. Our results show how the timing of a life-history event like territory acquisition can directly affect survival and also mediate the effects of biotic and abiotic factors later in life. This engenders a better understanding of the fitness consequences of the timing of key life-history events.


Asunto(s)
Lynx , Sciuridae , Animales , Densidad de Población , Conducta Predatoria , Estaciones del Año
17.
Ecol Lett ; 22(4): 697-706, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30740839

RESUMEN

Interactions between organisms are ubiquitous and have important consequences for phenotypes and fitness. Individuals can even influence those they never meet, if they have extended phenotypes that alter the environments others experience. North American red squirrels (Tamiasciurus hudsonicus) guard food hoards, an extended phenotype that typically outlives the individual and is usually subsequently acquired by non-relatives. Hoarding by previous owners can, therefore, influence subsequent owners. We found that red squirrels breed earlier and had higher lifetime fitness if the previous hoard owner was a male. This was driven by hoarding behaviour, as males and mid-aged squirrels had the largest hoards, and these effects persisted across owners, such that if the previous owner was male or died in mid-age, subsequent occupants had larger hoards. Individuals can, therefore, influence each other's resource-dependent traits and fitness without ever meeting, such that the past can influence contemporary population dynamics through extended phenotypes.


Asunto(s)
Aptitud Genética , Sciuridae , Animales , Masculino , Fenotipo
18.
Am Nat ; 194(4): 574-589, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31490724

RESUMEN

The episodic production of large seed crops by some perennial plants (masting) is known to increase seed escape by alternately starving and swamping seed predators. These pulses of resources might also act as an agent of selection on the life histories of seed predators, which could indirectly enhance seed escape by inducing an evolutionary load on seed predator populations. We measured natural selection on litter size of female North American red squirrels (Tamiasciurus hudsonicus) across 28 years and five white spruce (Picea glauca) masting events. Observed litter sizes were similar to optimum litter sizes during nonmast years but were well below optimum litter sizes during mast years. Mast events therefore caused selection for larger litters ( ß'=0.25 ) and a lag load ( L=0.25 ) on red squirrels during mast years. Reduced juvenile recruitment associated with this lag load increased the number of spruce cones escaping squirrel predation. Although offspring and parents often experienced opposite environments with respect to the mast, we found no effect of environmental mismatches across generations on either offspring survival or population growth. Instead, squirrels plastically increased litter sizes in anticipation of mast events, which partially, although not completely, reduced the lag load resulting from this change in food availability. These results therefore suggest that in addition to ecological and behavioral effects on seed predators, mast seed production can further enhance seed escape by inducing maladaptation in seed predators through fluctuations in optimal trait values.


Asunto(s)
Sciuridae/fisiología , Semillas , Adaptación Fisiológica , Animales , Femenino , Tamaño de la Camada/fisiología , Picea/fisiología , Dinámica Poblacional , Selección Genética , El Yukón
19.
J Evol Biol ; 32(6): 559-571, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859649

RESUMEN

Organisms can affect one another's phenotypes when they socially interact. Indirect genetic effects occur when an individual's phenotype is affected by genes expressed in another individual. These heritable effects can enhance or reduce adaptive potential, thereby accelerating or reversing evolutionary change. Quantifying these social effects is therefore crucial for our understanding of evolution, yet estimates of indirect genetic effects in wild animals are limited to dyadic interactions. We estimated indirect phenotypic and genetic effects, and their covariance with direct effects, for the date of spring breeding in North American red squirrels (Tamiasciurus hudsonicus) living in an array of territories of varying spatial proximity. Additionally, we estimated indirect effects and the strength of selection at low and high population densities. Social effects of neighbours on the date of spring breeding were different from zero at high population densities but not at low population densities. Indirect phenotypic effects accounted for a larger amount of variation in the date of breeding than differences attributable to the among-individual variance, suggesting social interactions are important for determining breeding dates. The genetic component to these indirect effects was however not statistically significant. We therefore showcase a powerful and flexible method that will allow researchers working in organisms with a range of social systems to estimate indirect phenotypic and genetic effects, and demonstrate the degree to which social interactions can influence phenotypes, even in a solitary species.


Asunto(s)
Modelos Genéticos , Parto , Sciuridae/psicología , Medio Social , Territorialidad , Animales , Femenino , Masculino , Sciuridae/genética
20.
Biol Lett ; 15(7): 20190260, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31337294

RESUMEN

Phenotypic plasticity-one individual's capacity for phenotypic variation under different environments-is critical for organisms facing fluctuating conditions within their lifetime. North American red squirrels (Tamiasciurus hudsonicus) experience drastic among-year fluctuations in conspecific density. This shapes juvenile competition over vacant territories and overwinter survival. To help young cope with competition at high densities, mothers can increase offspring growth rates via a glucocorticoid-mediated maternal effect. However, this effect is only adaptive under high densities, and faster growth often comes at a cost to longevity. While red squirrels can adjust hormones in response to fluctuating density, the degree to which mothers differ in glucocorticoid plasticity across changing densities remains unknown. Findings from our reaction norm approach revealed significant individual variation not only in a female red squirrel's mean endocrine phenotype but also in endocrine plasticity in response to changes in local density. Future work on proximate and ultimate drivers of variation in endocrine plasticity and maternal effects is needed, particularly in free-living animals experiencing fluctuating environments.


Asunto(s)
Adaptación Fisiológica , Sciuridae , Animales , Femenino , Glucocorticoides , Humanos , Herencia Materna , Madres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA