RESUMEN
Easy preparation, good yield and easy recovery are the key challenges in the development of industrial catalysts. To meet all these three criteria, we have prepared intelligent, magnetizable NiFe2O4- and CoFe2O4-supported palladium catalysts that can be easily and completely recovered from the reaction medium by magnetic separation. The fast and facile preparation was achieved by a solvothermal method followed by sonochemical-assisted decomposition of the palladium nanoparticles onto the surface of the magnetic nanoparticles. The metal-support interaction was enhanced by amine functionalization of the supports using monoethanolamine. The performance and stability of the non-functionalized and amine-functionalized NiFe2O4- and CoFe2O4-supported palladium catalysts were compared in the industrially important nitrobenzene hydrogenation reaction. All catalysts showed high catalytic activity during aniline synthesis; complete nitrobenzene conversion and high aniline yield (above 97 n/n%) and selectivity (above 98 n/n%) were achieved. However, during reuse tests, the activity of the non-functionalized catalysts decreased, as the palladium was leached from the surface of the support. On the other hand, in the case of their amine-functionalized counterparts, there was no decrease in activity, and a non-significant decrease in palladium content could be measured. Based on these results, it can be concluded that amine functionalization of transition metal ferrites may result in more effective catalysts due to the enhanced metal-carrier interaction between the support and the precious metal.
Asunto(s)
Nanopartículas del Metal , Níquel , Aminas , Paladio , Hidrogenación , Cobalto , Compuestos de Anilina , NitrobencenosRESUMEN
The need for stable and well-defined magnetic nanoparticles is constantly increasing in biomedical applications; however, their preparation remains challenging. We used two different solvothermal methods (12 h reflux and a 4 min microwave, MW) to synthesize amine-functionalized zinc ferrite (ZnFe2O4-NH2) superparamagnetic nanoparticles. The morphological features of the two ferrite samples were the same, but the average particle size was slightly larger in the case of MW activation: 47 ± 14 nm (Refl.) vs. 63 ± 20 nm (MW). Phase identification measurements confirmed the exclusive presence of zinc ferrite with virtually the same magnetic properties. The Refl. samples had a zeta potential of -23.8 ± 4.4 mV, in contrast to the +7.6 ± 6.8 mV measured for the MW sample. To overcome stability problems in the colloidal phase, the ferrite nanoparticles were embedded in polyvinylpyrrolidone and could be easily redispersed in water. Two PVP-coated zinc ferrite samples were administered (1 mg/mL ZnFe2O4) in X BalbC mice and were compared as contrast agents in magnetic resonance imaging (MRI). After determining the r1/r2 ratio, the samples were compared to other commercially available contrast agents. Consistent with other SPION nanoparticles, our sample exhibits a concentrated presence in the hepatic region of the animals, with comparable biodistribution and pharmacokinetics suspected. Moreover, a small dose of 1.3 mg/body weight kg was found to be sufficient for effective imaging. It should also be noted that no toxic side effects were observed, making ZnFe2O4-NH2 advantageous for pharmaceutical formulations.
Asunto(s)
Medios de Contraste , Nanopartículas , Ratones , Animales , Polímeros , Aminas , Zinc , Distribución Tisular , Imagen por Resonancia Magnética/métodos , Compuestos Férricos , Preparaciones FarmacéuticasRESUMEN
Electrospinning has recently been recognized as a potential method for use in biomedical applications such as nanofiber-based drug delivery or tissue engineering scaffolds. The present study aimed to demonstrate the electrospinning preparation and suitability of ß-tricalcium phosphate-modified aerogel containing polyvinyl alcohol/chitosan fibrous meshes (BTCP-AE-FMs) for bone regeneration under in vitro and in vivo conditions. The mesh physicochemical properties included a 147 ± 50 nm fibrous structure, in aqueous media the contact angles were 64.1 ± 1.7°, and it released Ca, P, and Si. The viability of dental pulp stem cells on the BTCP-AE-FM was proven by an alamarBlue assay and with a scanning electron microscope. Critical-size calvarial defects in rats were performed as in vivo experiments to investigate the influence of meshes on bone regeneration. PET imaging using 18F-sodium fluoride standardized uptake values (SUVs) detected 7.40 ± 1.03 using polyvinyl alcohol/chitosan fibrous meshes (FMs) while 10.72 ± 1.11 with BTCP-AE-FMs after 6 months. New bone formations were confirmed by histological analysis. Despite a slight change in the morphology of the mesh because of cross-linking, the BTCP-AE-FM basically retained its fibrous, porous structure and hydrophilic and biocompatible character. Our experiments proved that hybrid nanospun scaffold composite mesh could be a new experimental bone substitute bioactive material in future medical practice.
Asunto(s)
Quitosano , Ratas , Animales , Quitosano/química , Alcohol Polivinílico/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Materiales Dentales , Materiales Biocompatibles/químicaRESUMEN
Sucrose-1,6-hexamethylene diisocyanate (HDI) cooligomers were synthesized and used as new polyols for poly(ε-caprolactone) (PCL)-based polyurethanes. The polyaddition reaction of sucrose and HDI was monitored by MALDI-TOF MS. It was found that by selecting appropriate reaction conditions, mostly linear oligomer chains containing 16 sucrose units could be obtained. For the synthesis of polyurethane networks, prepolymers were prepared by the reaction of poly(ε-caprolactone) (PCL, 10 kg/mol) with HDI or 4,4'-methylene diphenyl diisocyanate (MDI) and were reacted with sucrose-HDI cooligomers. The so-obtained sucrose-containing polyurethanes were characterized by means of attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FT IR), swelling, mechanical (uniaxial tensile tests) and differential scanning calorimetry (DSC).
Asunto(s)
Isocianatos/química , Poliuretanos/síntesis química , Sacarosa/química , Rastreo Diferencial de Calorimetría , Ensayo de Materiales , Poliésteres/síntesis química , Poliésteres/química , Poliuretanos/química , Espectroscopía Infrarroja por Transformada de Fourier , TemperaturaRESUMEN
In this paper, the synthesis, characterization, and properties of crosslinked poly(ε-caprolactone)-based polyurethanes as potential tissue replacement materials are reported. The polyurethane prepolymers were prepared from poly(ε-caprolactone)diol (PCD), polyethylene glycol (PEG)/polylactic acid diol (PLAD), and 1,6-hexamethylene diisocyanate (HDI). In these segmented polyurethanes, the role of PEG/PLAD was to tune the hydrophobic/hydrophilic character of the resulting polymer while sucrose served as a crosslinking agent. PLAD was synthesized by the polycondensation reaction of D,L-lactic acid and investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance spectroscopy (NMR). The crosslinked polyurethane samples (SUPURs) obtained were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (AT-FT-IR), swelling, and mechanical (uniaxial tensile tests) experiments. The thermo and thermomechanical behavior were studied by differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). The viability of dental pulp stem cells was investigated in the case of polyurethanes composed of fully biocompatible elements. In our studies, none of our polymers showed toxicity to stem cells (DPSCs).
Asunto(s)
Poliuretanos , Sacarosa , Materiales Biocompatibles/química , Poliésteres/química , Polietilenglicoles/química , Polímeros , Poliuretanos/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Candida auris biofilms exhibit decreased susceptibility to echinocandins, which is associated with poorer clinical outcomes. Farnesol is a quorum-sensing molecule enhancing the activity of antifungals; therefore, we evaluated the in vitro effect of farnesol with anidulafungin, caspofungin, or micafungin against biofilms using fractional inhibitory concentration indexes (FICI), Bliss independence model, LIVE/DEAD-assay and scanning electron microscopy. Based on mathematical models, farnesol caused synergism in eleven out of twelve cases (FICIs range 0.133-0.507; Bliss synergy volume range 70.39-204.6 µM2%). This was confirmed by microscope images of combination-exposed biofilms. Our study showed the prominent effect of farnesol with echinocandins against C. auris biofilms.
Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Equinocandinas/farmacología , Farnesol/farmacología , Caspofungina/farmacología , Sinergismo Farmacológico , Micafungina/farmacología , Pruebas de Sensibilidad Microbiana , Modelos TeóricosRESUMEN
The activity of fluconazole, amphotericin B, caspofungin and micafungin was determined using XTT-based fungal damage assays against planktonic cells, early and mature biofilms of Candida kefyr. Median MICs of planktonic cells were 0.25 mg/l, 0.25 mg/l, 0.5 mg/l, and 0.06 mg/l for fluconazole, amphotericin B, caspofungin, and micafungin, respectively. Fluconazole showed at least 50% fungal damage at ≥4 mg/l (51.5% ± 6.63% to 78.38% ± 1.44%) and at ≥128 mg/l (57.88% ± 9.2% to 67.25% ± 9.59%), while amphotericin B produced an even higher anti-biofilm effect at ≥0.5 mg/l (64.63% ± 6.79% to 79.5% ± 5.9%) and at ≥0.12 mg/l (77.63% ± 8.43% to 92.75% ± 1.89%) against early and mature biofilms, respectively. In case of micafungin, 50% fungal damage was observed at ≥0.06 mg/l (66.88% ± 10.16% to 98.63% ± 1.24%) and ≥0.25 mg/l (74.13% ± 10.77% to 99.38% ± 0.38%) for early and mature biofilms, respectively. Caspofungin-exposed cells showed an unexpected susceptibility pattern, that is, planktonic cells showed significantly decreased susceptibility at concentrations ranging from 0.015 mg/l to 1 mg/l compared to biofilms (P < .05-.01). The damage in planktonic cells and biofilms was comparable at higher concentrations. For planktonic cells and biofilms, 50% fungal damage was observed first at 0.5 mg/l (59.75% ± 3.16%) and at 0.06 mg/l (70.25% ± 10.95%), respectively. This unexpected pattern was confirmed using scanning electron microscopy. The unusual susceptibility pattern observed at lower caspofungin concentrations may explain the poorer outcome of caspofungin-treated C. kefyr infections documented in certain patient populations. As this phenomenon was markedly less apparent in case of micafungin, these data suggest that micafungin may be a more reliable option than caspofungin for the treatment of C. kefyr infections.
Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/crecimiento & desarrollo , Candida/ultraestructura , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/microbiología , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
: Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with diverse developmental roles, including differentiation of skeletal elements. It is a positive regulatory factor of chondrogenesis and osteogenic differentiation in vitro, but little is known about its in vivo role in bone formation. In our experiments, diaphyses of long bones from hind limbs of PACAP gene-deficient mice showed changes in thickness and increased staining intensity. Our main goal was to perform a detailed morphological and molecular biological analysis of femurs from PACAP knockout (KO) and wild type (WT) mice. Transverse diameter and anterior cortical bone thickness of KO femurs showed significant alterations with disturbed Ca2+ accumulation and collagen type I expression. Higher expression and activity of alkaline phosphatase were also observed, accompanied by increased fragility PACAP KO femurs. Increased expression of the elements of bone morphogenic protein (BMP) and hedgehog signalling was also observed, and are possibly responsible for the compensation mechanism accounting for the slight morphological changes. In summary, our results show that lack of PACAP influences molecular and biomechanical properties of bone matrix, activating various signalling cascade changes in a compensatory fashion. The increased fragility of PACAP KO femur further supports the role of endogenous PACAP in in vivo bone formation.
Asunto(s)
Condrogénesis/genética , Osteogénesis/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Transducción de Señal/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Calcio/metabolismo , Diferenciación Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fémur/diagnóstico por imagen , Fémur/metabolismo , Expresión Génica , Ratones Noqueados , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Microtomografía por Rayos XRESUMEN
An unprecedented rate enhancement was observed in the wet-chemical synthesis of tellurium nanowires under crowded conditions of inert macromolecules. The synthesis was carried out at 105 °C using solutions of sodium tellurite (Na2TeO3) as a precursor, hydrazine (N2H4) as a reducing agent, and polyvinylpyrrolidone (PVP) as both a stabilizing and crowding agent. The PVP concentration was systematically varied between the dilute and crowding regimes up to 166 g l-1. The growth of the nanowires was monitored by measuring their size-dependent optical properties in the UV-Vis spectrum characterizing the size and morphology evolution of the nanowires and a coexisting phase of amorphous tellurium nanoparticles. The observed growth characteristics were interpreted in terms of non-specific structural organization of the crowded media due to the entropic-driven effects of space compartmentalization.
RESUMEN
The cell surface distribution patterns (clustering) of membrane proteins have been widely investigated in cell biology. Here we describe a novel transmission electron microscopic (TEM) protocol designed to improve the quality of information obtained about the protein distribution patterns detected. This novel method makes it possible to study the clustering of all transmembrane proteins on one half of the cytoplasmic membrane of a whole cell. To achieve better imaging, we combine various methods, including critical-point drying, fixation of gold beads with a carbon layer, and a newly developed chemical thinning method. In addition, in our image-processing algorithm, we implemented pair correlation and pair cross-correlation functions, providing more details and better quantitative accuracy in characterizing the size and numbers of possible protein clusters. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample preparation and transmission electron micrography Alternate Protocol: Direct cell labeling for transmission electron micrography Basic Protocol 2: Analysis of TEM images to detect immunogold-labeled proteins.
Asunto(s)
Membrana Celular , Proteínas de la Membrana , Microscopía Electrónica de Transmisión , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , AlgoritmosRESUMEN
Acoustic emission from the compounds [Fe(HB(tz)3)2] and [Fe(Htrz)(trz)2]BF4 was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.
RESUMEN
Toluene diamine (TDA) is a major raw material in the polyurethane industry and thus, its production is highly important. TDA is obtained through the catalytic hydrogenation of 2,4-dinitrotoluene (2,4-DNT). In this study a special hydrogenation catalyst has been developed by decomposition cobalt ferrite nanoparticles onto a natural clay-oxide nanocomposite (bentonite) surface using a microwave-assisted solvothermal method. The catalyst particles were examined by TEM and X-ray diffraction. The palladium immobilized on the bentonite crystal surface was identified using an XRD and HRTEM device. The obtained catalyst possesses the advantageous property of being easily separable due to its magnetizability on a natural mineral support largely available and obtained through low carbon- and energy footprint methods. The catalyst demonstrated outstanding performance with a 2,4-DNT conversion rate exceeding 99% along with high yields and selectivity towards 2,4-TDA and all of this achieved within a short reaction time. Furthermore, the developed catalyst exhibited excellent stability, attributed to the strong interaction between the catalytically active metal and its support. Even after four cycles of reuse, the catalytic activity remained unaffected and the Pd content of the catalyst did not change, which indicates that the palladium component remained firmly attached to the magnetic support's surface.
RESUMEN
The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation.
Asunto(s)
Implantes Dentales , Propiedades de Superficie , Humanos , Microscopía Electrónica de Rastreo , Oseointegración , Titanio/química , Espectroscopía de Absorción de Rayos XRESUMEN
Temporal average shapes of crackling noise avalanches, U(t) (U is the detected parameter proportional to the interface velocity), have self-similar behavior, and it is expected that by appropriate normalization, they can be scaled together according to a universal scaling function. There are also universal scaling relations between the avalanche parameters (amplitude, A, energy, E, size (area), S, and duration, T), which in the mean field theory (MFT) have the form EâA3, SâA2, SâT2. Recently, it turned out that normalizing the theoretically predicted average U(t) function at a fixed size, U(t)=atexp-bt2 (a and b are non-universal, material-dependent constants) by A and the rising time, R, a universal function can be obtained for acoustic emission (AE) avalanches emitted during interface motions in martensitic transformations, using the relation R~A1-φ too, where φ is a mechanism-dependent constant. It was shown that φ also appears in the scaling relations E~A3-φ and S~A2-φ, in accordance with the enigma for AE, that the above exponents are close to 2 and 1, respectively (in the MFT limit, i.e., with φ= 0, they are 3 and 2, respectively). In this paper, we analyze these properties for acoustic emission measurements carried out during the jerky motion of a single twin boundary in a Ni50Mn28.5Ga21.5 single crystal during slow compression. We show that calculating from the above-mentioned relations and normalizing the time axis of the average avalanche shapes with A1-φ, and the voltage axis with A, the averaged avalanche shapes for the fixed area are well scaled together for different size ranges. These have similar universal shapes as those obtained for the intermittent motion of austenite/martensite interfaces in two different shape memory alloys. The averaged shapes for a fixed duration, although they could be acceptably scaled together, showed a strong positive asymmetry (the avalanches decelerate much slower than they accelerate) and thus did not show a shape reminiscent of an inverted parabola, predicted by the MFT. For comparison, the above scaling exponents were also calculated from simultaneously measured magnetic emission data. It was obtained that the φ values are in accordance with theoretical predictions going beyond the MFT, but the AE results for φ are characteristically different from these, supporting that the well-known enigma for AE is related to this deviation.
RESUMEN
In this work, the preparation and systematic investigation of cross-linked polyurethane-epoxy (PU-EP) polymer systems are reported. The PU-EP polymers were prepared using a reaction of isocyanate (NCO)-terminated PU-prepolymer with diglycidyl ether of bisphenol A (DGEBA)-amine cooligomer. The oligomerization of DGEBA was carried out by adding furfurylamine (FA) or ethanolamine (EA), resulting in DGEBA-amine cooligomers. For the synthesis of NCO-terminated PU-prepolymer, poly(ε-caprolactone)diol (PCD) (Mn = 2 kg/mol) and 1,6-hexamethylene diisocyanate (HDI) were used. The cross-linking was achieved by adding DGEBA-amine cooligomer to PU-prepolymer, in which the obtained urethane bonds, due to the presence of free hydroxil groups in the activated DGEBA, served as netpoints. During cross-linking, ethanolamine provides an additional free hydroxyl group for the formation of a new urethane bond, while furfurylamine can serve as a thermoreversible coupling element (e.g., Diels-Alder adduct). The PU-EP networks were characterized using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and scanning electron microscopy (SEM). The DMA curves of some PU-EPs (depending on the compositions and the synthetic method) revealed a plateau-like region above the melting temperature (Tm) of PCD, confirming the presence of a cross-linked structure. This property resulted in a shape memory (SM) behavior for these samples, which can be fine-tuned in the presence of furfurylamine through the formation of additional thermoreversible bonds (e.g., Diels-Alder adduct).
RESUMEN
Results of acoustic emission (AE) measurements, carried out during plastic deformation of polycrystalline Sn samples, are analyzed by the adaptive sequential k-means method. The acoustic avalanches, originating from different sources, are separated on the basis of their spectral properties, that is, sorted into clusters, presented both on the so-called feature space (energy-median frequency plot) and on the power spectral density (PSD) curves. We found that one cluster in every measurement belongs to background vibrations, while the remaining ones are clearly attributed to twinning as well as dislocation slips at −30 °C and 25 °C, respectively. Interestingly, fingerprints of the well-known "ringing" of AE signals are present in different weights on the PSD curves. The energy and size distributions of the avalanches, corresponding to twinning and dislocation slips, show a bit different power-law exponents from those obtained earlier by fitting all AE signals without cluster separation. The maximum-likelihood estimation of the avalanche energy (ε) and size (τ) exponents provide ε=1.57±0.05 (at −30 °C) and ε=1.35±0.1 (at 25 °C), as well as τ=1.92±0.05 (at −30 °C) and τ= 1.55±0.1 (at 25 °C). The clustering analysis provides not only a manner to eliminate the background noise, but the characteristic avalanche shapes are also different for the two mechanisms, as it is visible on the PSD curves. Thus, we have illustrated that this clustering analysis is very useful in discriminating between different AE sources and can provide more realistic estimates, for example, for the characteristic exponents as compared to the classical hit-based approach where the exponents reflect an average value, containing hits from the low-frequency mechanical vibrations of the test machine, too.
RESUMEN
In some shape-memory single crystals the stress-strain (σ~ε) curves, belonging to stress induced martensitic transformations from austenite to martensite at fixed temperature, instead of being the usual slightly increasing function or horizontal, have an overall negative slope with sudden stress drops in it. We discuss this phenomenon by using a local equilibrium thermodynamic approach and analysing the sign of the second derivative of the difference of the Gibbs free energy. We show that, considering also the possible nucleation and growth of two martensite structural modifications/variants, the stress-strain loops can be unstable. This means that the overall slope of the uploading branch of the stress-strain curve can be negative for smooth transformation if the second martensite, which is more stable with larger transformation strain, is the final product. We also show that local stress-drops on the stress-strain curve can appear if the nucleation of the second martensite is difficult, and the presence of such local stress-drops alone can also result in an overall negative slope of the stress-strain curves. It is illustrated that the increase of the temperature of the thermal recovery during burst-like transition is a measure of the change of the nucleation energy: the more stable martensite has larger nucleation energy.
RESUMEN
There are many systems producing crackling noise (avalanches) in materials. Temporal shapes of avalanches, U(t) (U is the detected voltage signal, t is the time), have self-similar behaviour and the normalized U(t) function (e.g., dividing both the values of U and t by S1/2, where S is the avalanche area), averaged for fixed S, should be the same, independently of the type of materials or avalanche mechanisms. However, there are experimental evidences that the temporal shapes of avalanches do not scale completely in a universal way. The self-similarity also leads to universal power-law-scaling relations, e.g., between the energy, E, and the peak amplitude, Am, or between S and Am. There are well-known enigmas, where the above exponents in acoustic emission measurements are rather close to 2 and 1, respectively, instead of E~Am3 and S~Am2, obtained from the mean field theory, MFT. We show, using a theoretically predicted averaged function for the fixed avalanche area, U(t)=atexp(-bt2) (where a and b are non-universal, material-dependent constants), that the scaling exponents can be different from the MFT values. Normalizing U by Am and t by tm (the time belonging to the Am: rise time), we obtain tm~Am1-φ (the MFT values can be obtained only if φ would be zero). Here, φ is expected to be material-independent and to be the same for the same mechanism. Using experimental results on martensitic transformations in two different shape-memory single-crystals, φ = 0.8 ± 0.1 was obtained (φ is the same for both alloys). Thus, dividing U by Am as well as t by Am1-φ (~tm) leads to the same common, normalized temporal shape for different, fixed values of S. This normalization can also be used in general for other experimental results (not only for acoustic emission), which provide information about jerky noises in materials.
RESUMEN
Transcription factors (TFs) with the basic leucin zipper domain are key elements of the stress response pathways in filamentous fungi. In this study, we functionally characterized the two bZIP type TFs AtfA and AtfB by deletion (Δ) and overexpression (OE) of their encoding genes in all combination: ΔatfA, ΔatfB, ΔatfAΔatfB, ΔatfAatfBOE, ΔatfBatfAOE, atfAOE, atfBOE and atfAOEatfBOE in Aspergillus nidulans. Based on our previous studies, ΔatfA increased the sensitivity of the fungus to oxidative stress mediated by menadione sodium bisulfite (MSB) and tert-butylhydroperoxide (tBOOH), while ΔatfB was not sensitive to any oxidative stress generating agents, namely MSB, tBOOH and diamide at all. Contrarily, the ΔatfB mutant was sensitive to NaCl, but tolerant to sorbitol. Overexpression of atfB was able to compensate the MSB sensitivity of the ΔatfA mutant. Heavy metal stress elicited by CdCl2 reduced diameter of the atfBOE and atfAOEatfBOE mutant colonies to about 50% of control colony, while the cell wall stress generating agent CongoRed increased the tolerance of the ΔatfA mutant. When we tested the heat stress sensitivity of the asexual spores (conidiospores) of the mutants, we found that conidiospores of ΔatfAatfBOE and ΔatfBatfAOE showed nearly 100% tolerance to heat stress. Asexual development was negatively affected by ΔatfA, while atfAOE and atfAOE coupled with ΔatfB increased the number of conidiospores of the fungus approximately 150% compared to the control. Overexpression of atfB led to a 25% reduction in the number of conidiospores, but increased levels of abaA mRNA and size of conidiospores. Sexual fruiting body (cleistothecium) formation was diminished in the ΔatfA and the ΔatfAΔatfB mutants, while relatively elevated in the ΔatfB and the ΔatfBatfAOE mutants. Production of the mycotoxin sterigmatocystin (ST) was decreased to undetectable levels in the ΔatfA mutant, yet ST production was restored in the ΔatfAΔatfB mutant, suggesting that ΔatfB can suppress ST production defect caused by ΔatfA. Levels of ST were also significantly decreased in the ΔatfAatfBOE, ΔatfBatfAOE and atfAOEatfBOE mutants.
RESUMEN
The human blood sugar level is important and should be controlled to avoid any damage to nerves and blood vessels which could lead to heart disease and many other problems. Several market-available treatments for diabetes could be used, such as insulin therapy, synthetic drugs, herbal drugs, and transdermal patches, to help control blood sugar. In a double-blind human study, four kinds of honey from bees fed on acacia, sea buckthorn, chlorella alga, and green walnut extracts were used in fortifying yogurt for controlling human blood sugar. The impact of a previously fortified honey was investigated on blood levels and other parameters of healthy individuals in a human study with 60 participants. The participants received 150 mL of yogurt mixed with 30 g of honey every morning for 21 days. Before and after the study period, the basic blood parameters were tested, and the participants filled out standardized self-report questionnaires. Acacia honey was the traditional honey used as a control; the special honey products were produced by the patented technology. The consumption of green walnut honey had a significant effect on the morning blood sugar level, which decreased for every participant in the group (15 people). The average blood sugar level at the beginning in the walnut group was 4.81 mmol L-1, whereas the value after 21 days was 3.73 mmol L-1. The total decrease level of the individuals was about 22.45% (1.08 mmol L-1). Concerning the sea buckthorn and chlorella alga-based honey product groups, there was no significant change in the blood sugar level, which were recorded at 4.91 and 5.28 mmol L-1 before treatment and 5.28 and 5.07 mmol L-1 after, respectively. In the case of the acacia honey group, there was a slight significant decrease as well, it was 4.77 mmol L-1 at the beginning and 4.27 mmol L-1 at the end with a total decrease rate of 10.48%. It could thus be concluded that the active ingredients of green walnut can significantly decrease the blood sugar level in humans. This study, as a first report, is not only a new innovative process to add herbs or healthy active ingredients to honey but also shows how these beneficial ingredients aid the honey in controlling the human blood sugar level.