Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38953452

RESUMEN

Electrochemical systems possess a considerable part of modern technologies, such as the operation of rechargeable batteries and the fabrication of electronic components, which are explored both experimentally and computationally. The largest gap between the experimental observations and atomic-level simulations is their orders-of-magnitude scale difference. While the largest computationally affordable scale of the atomic-level computations is ∼ns and ∼nm, the smallest reachable scale in the typical experiments, using very high-precision devices, is ∼s and ∼µm. In order to close this gap and correlate the studies in the two scales, we establish an equivalent simulation setup for the given general experiment, which excludes the microstructure effects (i.e., solid-electrolyte interface), using the coarse-grained framework. The developed equivalent paradigm constitutes the adjusted values for the equivalent length scale (i.e., lEQ), diffusivity (i.e., DEQ), and voltage (i.e., VEQ). The time scale for the formation and relaxation of the concentration gradients in the vicinity of the electrode matches for both smaller scale (i.e., atomistic) equivalent simulations and the larger scale (i.e., continuum) experiments and could be utilized for exploring the cluster-level inter-ionic events that occur during the extended time periods. The developed model could offer insights for forecasting experiment dynamics and estimating the transition period to the steady-state regime of operation.

2.
Langmuir ; 39(9): 3301-3311, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802633

RESUMEN

Liquid infiltration is one of the commonly adapted flow mechanisms in microscale/nanoscale heat-transfer applications. The theoretical modeling of dynamic infiltration profile in the microscale/nanoscale requires a deep study, because the acting forces are entirely different from those of a large-scale system. Herein, a model equation is developed from the fundamental force balance at the microscale/nanoscale level, to capture the dynamic infiltration flow profile. Molecular kinetic theory (MKT) is used to predict the dynamic contact angle. Molecular dynamics (MD) simulations are performed to study the capillary infiltration in two different geometries. The infiltration length is computed from the simulation results. The model is also evaluated over surfaces having different surface wettability. The generated model provides a better estimation of the infiltration length, compared to the well-established models. The developed model is expected to aid in the designing of microscale/nanoscale devices where liquid infiltration plays a key role.

3.
Small ; 18(49): e2201691, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36287095

RESUMEN

This work demonstrates thermally programmable dynamic capillarity in exclusively engineered nanochannels functionalized by grafted smart elastomeric layers onto their inner surfaces. Tunable control of the capillarity is observed over the temperature window of 25-31 °C, deciphering the possibility of a sevenfold alteration in the rate of capillary flow. A simple theory explains the confluence of viscous and capillary interactions as mediated by the non-trivial interplay of the substrate wettability, confinement-induced surface layering of molecules, and thermally activated modulation of surface tension, to bring out this intriguing effect. The technology is demonstrated to be completely reconfigurable over the intended spatial and temporal regimes, via selective grafting of the channel surface and preferential choice of the activation temperature. Such favorable features as opposed to more complex yet non-reconfigurable flow manipulation strategies previously reported are likely to open up new possibilities of highly precise controlled nanofluidic manipulation of temperature-sensitive biological samples and chemical species on-demand, for applications ranging from biomedical technologies to energy harvesting and water purification.

4.
Langmuir ; 38(27): 8442-8455, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35771505

RESUMEN

The heat-dissipating capacity of a surface having micropillar wick structures, which resembles the evaporator section of a vapor chamber, is mainly limited by the liquid flow rate through the porous structure (permeability) and the capillary pressure gradient. The efficacy of a regular vapor chamber is determined from two parameters, namely, the dry-out heat flux and temperature of the evaporator surface. These two parameters possess a counter relation to each other. The work described herein introduces and evaluates the performance of a novel idea of electro-osmosis-aided thin-film evaporation from a micropillar array structure. This study is conducted using a discretized approach that is validated against the thin-film evaporation model and additionally the electro-osmotic flow model with pre-existing pressure gradient conditions. The unique feature of this approach is that it results in an increment in the magnitude of dry-out heat flux without significantly changing the surface temperature, wherein the increase in permeability is due to the addition of electro-osmotic flow. This comprehensive model considers various geometries, zeta potentials, and extremal electric fields and establishes the beneficial effects of the application of an external electric field. The results are used to predict the sensitivity and the dependence of the dry-out heat flux and the evaporator surface temperature on these parameters. For a host of electro-osmotic parameters considered herein, a maximum increment of up to 320% in the dry-out heat flux is observed for an external electric field of 105 V/m. The study, therefore, conclusively demonstrates the beneficial impact of electro-osmosis in enhancing the dry-out heat flux without any significant Joule heating.

5.
Langmuir ; 38(12): 3656-3665, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35286095

RESUMEN

It is well known that the wettability of a droplet on a solid substrate can be modified by the application of an electric field. The phenomenon of electrowetting along with the associated physics of droplet shape change and dynamics has traditionally been studied at the micro-scale leading to exciting applications. The present work is undertaken to explore the physics of electrowetting actuation of droplet movement at the molecular level. Molecular simulations are performed to obtain the dynamic spreading of the droplet under the action of a radially symmetric electric field on a silica substrate. The dynamic behavior of the contact diameter is found to be qualitatively similar to that observed at the laboratory scale. Further simulations of droplet actuation across an array of electrodes illustrated the dynamics of the center of mass, which is then used to estimate the contact line friction and compared with the predictions from a reduced-order model. A scaling analysis is used to probe the physics of the problem correlating the contact line friction coefficient and the droplet velocity after actuation. The results and understanding elicited from the fundamental approach have the potential to guide the development of quick and precise control of nano-sized droplets and may prove to be pivotal in the development of future nanofluidic systems, nanomanufacturing methodologies, and high-resolution optoelectronic devices.

6.
Langmuir ; 38(16): 4879-4886, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35410475

RESUMEN

We quantitatively investigate the role of voltage fluctuation in terms of different waveforms on the electrodeposition dynamics and morphology for varying electrolyte concentrations. Dependent on the electrolyte concentration, a wide range of morphologies ranging from highly branched dendrites to comparatively closed packed electrodeposits has been captured. We mechanistically map the deposition dynamics by image analysis and demonstrate the highly porous dendritic dynamics to be independent of external perturbation. Additionally, comparatively closed packed morphological features show significant sensitivity toward the frequency and nature of the waveforms. The results provide fundamental insights into the correlation between the time scales of voltage fluctuation and growth dynamics. We comprehensively analyze the effect of the waveform nature on the average deposition height and show sinusoidal fluctuation to be preferred over square and pulse for metal batteries for lower deposition heights.

7.
Langmuir ; 34(43): 12665-12679, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29664644

RESUMEN

The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.

8.
Langmuir ; 34(34): 9897-9906, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30052450

RESUMEN

Here, we report the intriguing movements of an extended liquid meniscus on a silicon substrate under the influence of sinusoidal alternating current (AC) voltages at different operating frequencies. As opposed to droplet electrowetting, wherein the droplet spreads and experiences oscillations at the free surface, the application of AC voltage to a thin liquid film results in distinct and uniform dewetting, in conjunction with augmented wetting. Image analyzing interferometry is used for the precise measurement of the film thickness profile and other associated parameters. We postulate that the classic Young-Lippmann equation fails to explain the dynamics of an extended meniscus and evince that the dynamics of film displacement could be successfully explained by considering the product of the applied electric field and its gradient, as opposed to the existing consideration of a square dependence on the applied voltage. The physics of the hitherto unreported phenomena is elucidated by developing a mathematical model, taking into consideration all of the germane forces governing the dynamics of the thin liquid film. We affirm that the present study would serve as a fundamental background for a fascinating mode of liquid actuation, with inherent application potential in several existing and novel microfluidic systems.

9.
Langmuir ; 34(5): 1844-1854, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29309153

RESUMEN

Electrowetting on dielectric (EWOD) on unidirectional microstructured surfaces has recently evoked significant interest as they can modulate the effect of electrowetting, and can thus find applications in directional wetting in microfluidic systems. However, the dependency of such EW phenomenon on their initial state of wetting and anisotropy is far from being well understood. The current study addresses the initial wetting states and their implication on the anisotropic electrowetting using a wrinkled EWOD platform. Herein we demonstrate a facile stampless and maskless structure generation technique to fabricate wrinkles of varying topography. Further, we have demonstrated alteration in the interfacial wetting conditions by modulating the wrinkle topography, and its effect on the droplet behavior during electrowetting. The capillary wicking-assisted electrowetting on these wrinkled surfaces is in specific direction dictated by the ordered wrinkles and prompts enhanced spreading of the droplet. We also demonstrate that while the enhancement of unidirectional electrowetting is stronger in conformal wetting state surfaces, composite wetting state surfaces depict a reversal in anisotropy.

10.
Soft Matter ; 14(36): 7335-7346, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30033474

RESUMEN

Microscopic investigations of any abnormality associated with erythrocyte/red blood cell morphology constitute an important segment of the age-old peripheral smear test. Though the test is conducted on a glass slide, the effect of glass and similar other solid substrates on erythrocyte morphology remained majorly unexplored. In the first of its kind investigation, we have outlined the effect of varying the substrate surface potential on erythrocyte morphology. Such a substrate induced phenomenon has been quantified for two distinctly different drying configurations (droplets and film) upon systematically varying the cell concentration. Experimental results and supporting theoretical analysis unambiguously show the surface potential of the solid substrate to be the most influential parameter in the process of morphological alteration. The findings of the present investigation may be utilized to formulate an error-free protocol for the baseline peripheral smear test of hematological diagnosis.


Asunto(s)
Eritrocitos/citología , Adulto , Humanos , Masculino , Propiedades de Superficie
11.
Soft Matter ; 14(34): 7034-7044, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30109884

RESUMEN

A facile methodology to create a wrinkled surface with a tailored topography is presented herein. The dependency of the elasticity of poly(dimethyl)siloxane (PDMS) on the curing temperature has been exploited to obtain a substrate with an elasticity gradient. The temperature gradient across the length of PDMS is created by a novel set-up consisting of a metal and insulator connected to a heater and the highest usable (no degradation of PDMS) temperature gradient is used. The time-dependent temperature distributions along the substrate are measured and the underlying physics of the dependence of the PDMS elasticity on the curing temperature is addressed. The PDMS substrate with the elasticity gradient is first stretched and subsequently oxidized by oxygen plasma. Upon relaxation, an ordered wrinkled surface with continuously varying wavelength and amplitude along the length of PDMS is obtained. The extent of hydrophobicity recovery of this plasma oxidized PDMS with varying elasticity has been studied. The change in the wavelength and amplitude of the regular patterns on the substrate can be controlled by varying operational parameters like applied pre-strain, plasma power and the heater temperature. It has been found that the spatial distributions of the topography and the hydrophobicity collectively decide the resultant wettability of the substrate. Such surfaces with gradients in the substructure dimensions demonstrate different wetting characteristics that may lead to a wide gamut of applications including droplet movement, cell adhesion and proliferation, diffraction grating etc.

12.
Langmuir ; 33(43): 12046-12055, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28945093

RESUMEN

We investigate electroosmotic flow of two immiscible viscoelastic fluids in a parallel plate microchannel. Contrary to traditional analysis, the effect of the depletion layer is incorporated near the walls, thereby capturing the complex coupling between rheology and electrokinetics. Toward ensuring realistic prediction, we show the dependence of electroosmotic flow rate on the solution pH and polymer concentration of the complex fluid. In order to assess our theoretical predictions, we have further performed experiments on electroosmosis of an aqueous solution of polyacrylamide (PAAm). Our analysis reveals that neglecting the existence of a depletion layer would result in grossly incorrect predictions of the electroosmotic transport of such fluids. These findings are likely to be of importance in understanding electroosmotically driven transport of complex fluids, including biological fluids, in confined microfluidic environments.

13.
Proteins ; 84(9): 1213-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27192507

RESUMEN

The amyloid ß-peptide fragment comprising residues 25-35 (Aß25-35 ) is known to be the most toxic fragment of the full length Aß peptide which undergoes fibrillation very rapidly. In the present work, we have investigated the effects of the micellar environment (cationic, anionic, and nonionic) on preformed Aß25-35 fibrils. The amyloid fibrils have been prepared and characterized by several biophysical and microscopic techniques. Effects of cationic dodecyl trimethyl ammonium bromide (DTAB), cetyl trimethylammonium bromide (CTAB), anionic sodium dodecyl sulfate (SDS), and nonionic polyoxyethyleneoctyl phenyl ether (Triton X-100 or TX) on fibrils have been studied by Thioflavin T fluorescence, UV-vis spectroscopy based turbidity assay and microscopic analyses. Interestingly, DTAB and SDS micelles were observed to disintegrate prepared fibrils to some extent irrespective of their charges. CTAB micelles were found to break down the fibrillar assembly to a greater extent. On the other hand, the nonionic surfactant TX was found to trigger the fibrillation process. The presence of a longer hydrophobic tail in case of CTAB is assumed to be a reason for its higher fibril disaggregating efficacy, the premise of their formation being largely attributed to hydrophobic interactions. Proteins 2016; 84:1213-1223. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Péptidos beta-Amiloides/química , Compuestos de Cetrimonio/química , Octoxinol/química , Fragmentos de Péptidos/química , Compuestos de Amonio Cuaternario/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Benzotiazoles , Cetrimonio , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Modelos Moleculares , Espectrometría de Fluorescencia , Tiazoles/química
14.
Langmuir ; 32(48): 12790-12798, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27802599

RESUMEN

Exercising control over the evaporation of colloidal suspensions is pivotal to modulate the coating characteristics for specific uses, wherein the interactions among the liquid, the particles, and the substrate control the process. In the present study, the contact line dynamics of a receding colloidal liquid film consisting of particles of distinctly different sizes (nominal diameters 0.055 and 1 µm and surface unmodified) during evaporation is analyzed. The role of the liquid polarity is also investigated by replacing the polar liquid (water) with a relatively nonpolar liquid (isopropyl alcohol) in the colloidal suspension. The characteristics of the evaporating receding meniscus, namely, the film thickness and the curvature are experimentally evaluated using an image-analyzing interferometry technique. The experimental results are assessed in conjunction with the augmented Young-Laplace equation, highlighting the roles of the relevant components of the disjoining pressure and the polarity of the liquid involved in the colloidal suspension.

15.
Langmuir ; 31(14): 4160-8, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25790194

RESUMEN

It is observed that the presence of negatively charged, suspended nanoparticles significantly changes the electric-field-induced spreading and contact line dynamics of partially wetting liquid films. Image-analyzing interferometry is used to accurately measure the meniscus profile, including the spatial change in the meniscus curvature. The nanoparticle-containing meniscus exhibits enhanced spreading with an increase in the particle size and weight fraction. The instantaneous contact line velocities are measured using video microscopy and a frame-by-frame analysis of the extracted images. The effects of electric field polarity reversal on the flow toward the contact line are explored as well. The movement of the meniscus is analyzed taking into account the capillary forces and Maxwell-stress-induced flows. An analytical model based on the Young-Laplace equation is used to analyze the electric-field-induced contact line motion, and the model-predicted velocities are compared to the experiments.

16.
Langmuir ; 31(41): 11269-78, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26422170

RESUMEN

Electrically actuated transport dynamics of colloidal droplets, on a hydrophobic dielectric film covering an array of electrodes, is studied here. Specifically, the effects of the size and electrical properties (zeta-potential) of the colloidal particles on such transport characteristics are investigated. For the colloidal droplets, the application of an electrical voltage leads to additional attenuation of the local dielectric-droplet interfacial tension. This is due to the electrically triggered enhanced colloidal particle adsorption at the dielectric-droplet interface, in the immediate vicinity of the droplet three-phase contact line (TPCL). The extent of such interfacial particle adsorption, and hence, the extent of the consequential reduction in the interfacial tension, is dictated by the combined effects of the three-phase contact line spreading, particle size, the interfacial electrostatic interaction between the colloidal particles (if charged) and the charged dielectric surface above the activated electrode, and the interparticle electrostatic repulsion. The electrical driving force of varying magnitude, stemming from this altered solid-liquid interfacial tension gradient in the presence of the colloidal particles, culminates in different droplet transport velocity and droplet transfer frequency for different colloidal droplets. We substantiate the inferences from our experimental results by a quasi-steady state force balance model for colloidal droplet transport. We believe that the present work will provide an accurate framework for determining the optimal design and operational parameters for digital microfluidic chips handling colloidal droplets, as encountered in a plethora of applications.

17.
Langmuir ; 31(41): 11260-8, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26381847

RESUMEN

Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

18.
Langmuir ; 31(22): 6001-10, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25973978

RESUMEN

The effect of surface wettability on the dynamics of crack formation and their characteristics are examined during the drying of aqueous colloidal droplets (1 µL volume) containing nanoparticles (53 nm mean particle diameter, 1 w/w %). Thin colloidal films, formed during drying, rupture as a result of the evaporation-induced capillary pressure and exhibit microscopic cracks. The crack initiation and propagation velocity as well as the number of cracks are experimentally evaluated for substrates of varying wettability and correlated to their wetting nature. Atomic force and scanning electron microscopy are used to examine the region in the proximity of the crack including the particle arrangements near the fracture zone. The altered substrate-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions, as a consequence of the changed wettability, are theoretically evaluated and found to be consistent with the experimental observations. The resistance of the film to cracking is found to depend significantly on the substrate surface energy and quantified by the critical stress intensity factor, evaluated by analyzing images obtained from confocal microscopy. The results indicate the possibility of controlling crack dynamics and morphology by tuning the substrate wettability.

19.
Int J Biol Macromol ; 256(Pt 2): 128271, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000604

RESUMEN

The dynamic equilibrium between an array of molecular forces precisely organizes the native structure of the protein. The charge on the protein, an interconnected network continuum, is crucial in determining its secondary and tertiary structure. The photolysis of the protein by ultraviolet (UV) light occurs by generating reactive oxygen intermediates from the interaction of matter and light. Herein, we have investigated the photolysis of the protein and its prevention by the pre-treatment with silver nanoparticle (AgNP) using non-faradaic electrical impedance spectroscopy (Nf-EIS). Five microliters of protein solution are used to measure its impedimetric parameters via Nf-EIS. The photoionization process sparks off an altered surface charge continuum of the protein molecules in tandem with the genesis of solvated electrons and protons, spurring an upward shift in conductivity. The AgNP pre-treatment has reduced the damaging effects of the UV radiation, which is reflected as lesser conductivity in contrast to the photolyzed protein solution. Raman Spectroscopy and circular dichroism tests affirm the trend of Nf-EIS results. These results show that Nf-EIS can evaluate protein structure analysis utilized in quality assurance and toxicity analysis for biologics.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/química , Nanopartículas del Metal/química , Fotólisis , Impedancia Eléctrica , Rayos Ultravioleta
20.
Int J Biol Macromol ; 260(Pt 2): 129470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237817

RESUMEN

Polydimethylsiloxane (PDMS), even though widely used in microfluidic applications, its hydrophobic nature restricts its utility in some cases. To address this, PDMS may be used in conjunction with a hydrophilic material. Herein, the PDMS surface is modified by plasma treatment followed by cross-linking with the cataractous eye protein isolate (CEPI). CEPI-PDMS composites are prepared at three pH and the effects of CEPI on the chemical, physical, and electrical properties of PDMS are extensively investigated. The cross-linking between PDMS and the protein are confirmed by FTIR, and the contact angle measurements indicate the improved hydrophilic nature of the composite films as compared to PDMS. Atomic Force Microscopy results demonstrate that the surface roughness is enhanced by the incorporation of the protein and is a function of the pH. The effective elastic modulus of the composites is improved by the incorporation of protein into the PDMS matrix. Measurements of the dielectric properties of these composites indicate that they behave as capacitors at lower frequency range while demonstrating resistive characteristics at higher frequency. These composites provide preliminary ideas in developing flexible devices for potential applications in diverse areas such as energy storage materials, and thermo-elective wireless switching devices.


Asunto(s)
Dimetilpolisiloxanos , Microfluídica , Propiedades de Superficie , Dimetilpolisiloxanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas del Ojo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA