Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346193

RESUMEN

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Intercambio Materno-Fetal , Embarazo , Femenino , Humanos , Animales , Ratones , Placenta , Trofoblastos , Diferenciación Celular/fisiología , Desarrollo Fetal , Factores de Transcripción GATA
2.
PLoS Genet ; 19(2): e1010631, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36791149

RESUMEN

Specification of migratory cell fate from a stationary population is complex and indispensable both for metazoan development as well for the progression of the pathological condition like tumor metastasis. Though this cell fate transformation is widely prevalent, the molecular understanding of this phenomenon remains largely elusive. We have employed the model of border cells (BC) in Drosophila oogenesis and identified germline activity of an RNA binding protein, Cup that limits acquisition of migratory cell fate from the neighbouring follicle epithelial cells. As activation of JAK-STAT in the follicle cells is critical for BC specification, our data suggest that Cup, non-cell autonomously restricts the domain of JAK-STAT by activating Notch in the follicle cells. Employing genetics and Delta endocytosis assay, we demonstrate that Cup regulates Delta recycling in the nurse cells through Rab11GTPase thus facilitating Notch activation in the adjacent follicle cells. Since Notch and JAK-STAT are antagonistic, we propose that germline Cup functions through Notch and JAK-STAT to modulate BC fate specification from their static epithelial progenitors.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transducción de Señal/genética , Oogénesis/genética , Células Germinativas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo
3.
PLoS Genet ; 17(8): e1009685, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343194

RESUMEN

Gap junction (GJ) proteins, the primary constituents of GJ channels, are conserved determinants of patterning. Canonically, a GJ channel, made up of two hemi-channels contributed by the neighboring cells, facilitates transport of metabolites/ions. Here we demonstrate the involvement of GJ proteins during cuboidal to squamous epithelial transition displayed by the anterior follicle cells (AFCs) from Drosophila ovaries. Somatically derived AFCs stretch and flatten when the adjacent germline cells start increasing in size. GJ proteins, Innexin2 (Inx2) and Innexin4 (Inx4), functioning in the AFCs and germline respectively, promote the shape transformation by modulating calcium levels in the AFCs. Our observations suggest that alterations in calcium flux potentiate STAT activity to influence actomyosin-based cytoskeleton, possibly resulting in disassembly of adherens junctions. Our data have uncovered sequential molecular events underlying the cuboidal to squamous shape transition and offer unique insight into how GJ proteins expressed in the neighboring cells contribute to morphogenetic processes.


Asunto(s)
Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Células Epiteliales/fisiología , Folículo Ovárico/fisiología , Actomiosina/metabolismo , Animales , Tipificación del Cuerpo , Señalización del Calcio , Conexinas/genética , Citoesqueleto/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Epiteliales/metabolismo , Femenino , Morfogénesis , Folículo Ovárico/metabolismo
4.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071312

RESUMEN

During embryonic development the placental vasculature acts as a major hematopoietic niche, where endothelial to hematopoietic transition ensures emergence of hematopoietic stem cells (HSCs). However, the molecular mechanisms that regulate the placental hematoendothelial niche are poorly understood. Using a parietal trophoblast giant cell (TGC)-specific knockout mouse model and single-cell RNA-sequencing, we show that the paracrine factors secreted by the TGCs are critical in the development of this niche. Disruptions in the TGC-specific paracrine signaling leads to the loss of HSC population and the concomitant expansion of a KDR+/DLL4+/PROM1+ hematoendothelial cell-population in the placenta. Combining single-cell transcriptomics and receptor-ligand pair analyses, we also define the parietal TGC-dependent paracrine signaling network and identify Integrin signaling as a fundamental regulator of this process. Our study elucidates novel mechanisms by which non-autonomous signaling from the primary parietal TGCs maintain the delicate placental hematopoietic-angiogenic balance and ensures embryonic and extraembryonic development.

5.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026770

RESUMEN

Methyltransferase-like 3 (METTL3), the catalytic enzyme of methyltransferase complex for m6A methylation of RNA, is essential for mammalian development. However, the importance of METTL3 in human placentation remains largely unexplored. Here, we show that a fine balance of METTL3 function in trophoblast cells is essential for successful human placentation. Both loss-of and gain-in METTL3 functions are associated with adverse human pregnancies. A subset of recurrent pregnancy losses and preterm pregnancies are often associated with loss of METTL3 expression in trophoblast progenitors. In contrast, METTL3 is induced in pregnancies associated with fetal growth restriction (FGR). Our loss of function analyses showed that METTL3 is essential for the maintenance of human TSC self-renewal and their differentiation to extravillous trophoblast cells (EVTs). In contrast, loss of METTL3 in human TSCs promotes syncytiotrophoblast (STB) development. Global analyses of RNA m6A modification and METTL3-RNA interaction in human TSCs showed that METTL3 regulates m6A modifications on the mRNA molecules of critical trophoblast regulators, including GATA2, GATA3, TEAD1, TEAD4, WWTR1, YAP1, TFAP2C and ASCL2, and loss of METTL3 leads to depletion of mRNA molecules of these critical regulators. Importantly, conditional deletion of Mettl3 in trophoblast progenitors of an early post-implantation mouse embryo also leads to arrested self-renewal. Hence, our findings indicate that METLL3 is a conserved epitranscriptomic governor in trophoblast progenitors and ensures successful placentation by regulating their self-renewal and dictating their differentiation fate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA