Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2320962121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980904

RESUMEN

Turbulent flows have been used for millennia to mix solutes; a familiar example is stirring cream into coffee. However, many energy, environmental, and industrial processes rely on the mixing of solutes in porous media where confinement suppresses inertial turbulence. As a result, mixing is drastically hindered, requiring fluid to permeate long distances for appreciable mixing and introducing additional steps to drive mixing that can be expensive and environmentally harmful. Here, we demonstrate that this limitation can be overcome just by adding dilute amounts of flexible polymers to the fluid. Flow-driven stretching of the polymers generates an elastic instability, driving turbulent-like chaotic flow fluctuations, despite the pore-scale confinement that prohibits typical inertial turbulence. Using in situ imaging, we show that these fluctuations stretch and fold the fluid within the pores along thin layers ("lamellae") characterized by sharp solute concentration gradients, driving mixing by diffusion in the pores. This process results in a [Formula: see text] reduction in the required mixing length, a [Formula: see text] increase in solute transverse dispersivity, and can be harnessed to increase the rate at which chemical compounds react by [Formula: see text]-enhancements that we rationalize using turbulence-inspired modeling of the underlying transport processes. Our work thereby establishes a simple, robust, versatile, and predictive way to mix solutes in porous media, with potential applications ranging from large-scale chemical production to environmental remediation.

2.
Proc Natl Acad Sci U S A ; 119(43): e2208019119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256809

RESUMEN

How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size-eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an "active fluid" whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies-as well as other forms of growing active matter, such as tumors and engineered living materials-in 3D environments.


Asunto(s)
Bacterias , Modelos Biológicos , Morfogénesis , Hidrogeles , Suelo
3.
Biophys J ; 123(8): 957-967, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38454600

RESUMEN

Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.


Asunto(s)
Escherichia coli , Escherichia coli/fisiología
4.
Soft Matter ; 20(24): 4795-4805, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38847805

RESUMEN

Bacteriophages ("phages") are viruses that infect bacteria. Since they do not actively self-propel, phages rely on thermal diffusion to find target cells-but can also be advected by fluid flows, such as those generated by motile bacteria themselves in bulk fluids. How does the flow field generated by a swimming bacterium influence how it encounters phages? Here, we address this question using coupled molecular dynamics and lattice Boltzmann simulations of flagellated bacteria swimming through a bulk fluid containing uniformly-dispersed phages. We find that while swimming increases the rate at which phages attach to both the cell body and flagellar propeller, hydrodynamic interactions strongly suppress this increase at the cell body, but conversely enhance this increase at the flagellar bundle. Our results highlight the pivotal influence of hydrodynamics on the interactions between bacteria and phages, as well as other diffusible species, in microbial environments.


Asunto(s)
Bacteriófagos , Hidrodinámica , Bacteriófagos/fisiología , Flagelos/fisiología , Bacterias/virología , Simulación de Dinámica Molecular , Acoplamiento Viral , Movimiento
5.
Soft Matter ; 20(7): 1425-1437, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38252539

RESUMEN

Obstructions influence the growth and expansion of bodies in a wide range of settings-but isolating and understanding their impact can be difficult in complex environments. Here, we study obstructed growth/expansion in a model system accessible to experiments, simulations, and theory: hydrogels swelling around fixed cylindrical obstacles with varying geometries. When the obstacles are large and widely-spaced, hydrogels swell around them and remain intact. In contrast, our experiments reveal that when the obstacles are narrow and closely-spaced, hydrogels fracture as they swell. We use finite element simulations to map the magnitude and spatial distribution of stresses that build up during swelling at equilibrium in a 2D model, providing a route toward predicting when this phenomenon of self-fracturing is likely to arise. Applying lessons from indentation theory, poroelasticity, and nonlinear continuum mechanics, we also develop a theoretical framework for understanding how the maximum principal tensile and compressive stresses that develop during swelling are controlled by obstacle geometry and material parameters. These results thus help to shed light on the mechanical principles underlying growth/expansion in environments with obstructions.

6.
Soft Matter ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012310

RESUMEN

The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology. Among these, soft matter physics has emerged as a fundamental nexus connecting and underpinning many research questions. This perspective article is a multi-voice effort to bring together different views and approaches, questions and insights, from researchers that work in this emerging area, the soft matter physics of the ground beneath our feet. In particular, we identify four major challenges concerned with the dynamics in and of the ground: (I) modeling from the grain scale, (II) near-criticality, (III) bridging scales, and (IV) life. For each challenge, we present a selection of topics by individual authors, providing specific context, recent advances, and open questions. Through this, we seek to provide an overview of the opportunities for the broad Soft Matter community to contribute to the fundamental understanding of the physics of the ground, strive towards a common language, and encourage new collaborations across the broad spectrum of scientists interested in the matter of the Earth's surface.

7.
Phys Rev Lett ; 131(11): 118301, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774273

RESUMEN

Collectives of actively moving particles can spontaneously separate into dilute and dense phases-a fascinating phenomenon known as motility-induced phase separation (MIPS). MIPS is well-studied for randomly moving particles with no directional bias. However, many forms of active matter exhibit collective chemotaxis, directed motion along a chemical gradient that the constituent particles can generate themselves. Here, using theory and simulations, we demonstrate that collective chemotaxis strongly competes with MIPS-in some cases, arresting or completely suppressing phase separation, or in other cases, generating fundamentally new dynamic instabilities. We establish principles describing this competition, thereby helping to reveal and clarify the rich physics underlying active matter systems that perform chemotaxis, ranging from cells to robots.

8.
Phys Rev Lett ; 130(12): 128204, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027860

RESUMEN

We use a theoretical model to explore how fluid dynamics, in particular, the pressure gradient and wall shear stress in a channel, affect the deposition of particles flowing in a microfluidic network. Experiments on transport of colloidal particles in pressure-driven systems of packed beads have shown that at lower pressure drop, particles deposit locally at the inlet, while at higher pressure drop, they deposit uniformly along the direction of flow. We develop a mathematical model and use agent-based simulations to capture these essential qualitative features observed in experiments. We explore the deposition profile over a two-dimensional phase diagram defined in terms of the pressure and shear stress threshold, and show that two distinct phases exist. We explain this apparent phase transition by drawing an analogy to simple one-dimensional mass-aggregation models in which the phase transition is calculated analytically.

9.
PLoS Comput Biol ; 18(5): e1010063, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533196

RESUMEN

The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings-despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading via motility that also incorporates cellular growth and division, and explicitly considers the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading-eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments.


Asunto(s)
Bacterias , Fenómenos Biológicos , Modelos Biológicos
10.
Soft Matter ; 19(37): 7184-7191, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37705404

RESUMEN

We recast the problem of hydrogel swelling under physical constraints as an energy optimization problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a jammed matrix of rigid beads and interpret the results to determine how confinement modifies the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of strains within the bulk of the hydrogel as the strain becomes localized to an outer region. We also explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian behavior as a function of swelling. Our model, implemented in the Morpho shape optimization environment and validated against an experimentally demonstrated prototypical scenario, can be applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in conjunction.

11.
Phys Rev Lett ; 128(14): 148101, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476484

RESUMEN

In contexts ranging from embryonic development to bacterial ecology, cell populations migrate chemotactically along self-generated chemical gradients, often forming a propagating front. Here, we theoretically show that the stability of such chemotactic fronts to morphological perturbations is determined by limitations in the ability of individual cells to sense and thereby respond to the chemical gradient. Specifically, cells at bulging parts of a front are exposed to a smaller gradient, which slows them down and promotes stability, but they also respond more strongly to the gradient, which speeds them up and promotes instability. We predict that this competition leads to chemotactic fingering when sensing is limited at too low chemical concentrations. Guided by this finding and by experimental data on E. coli chemotaxis, we suggest that the cells' sensory machinery might have evolved to avoid these limitations and ensure stable front propagation. Finally, as sensing of any stimuli is necessarily limited in living and active matter in general, the principle of sensing-induced stability may operate in other types of directed migration such as durotaxis, electrotaxis, and phototaxis.


Asunto(s)
Escherichia coli , Modelos Biológicos , Bacterias , Quimiotaxis
12.
Soft Matter ; 18(33): 6254-6263, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35946517

RESUMEN

Functionalized cellulosics have shown promise as naturally derived thermoresponsive gelling agents. However, the dynamics of thermally induced phase transitions of these polymers at the lower critical solution temperature (LCST) are not fully understood. Here, with experiments and theoretical considerations, we address how molecular architecture dictates the mechanisms and dynamics of phase transitions for cellulose ethers. Above the LCST, we show that hydroxypropyl substituents favor the spontaneous formation of liquid droplets, whereas methyl substituents induce fibril formation through diffusive growth. In celluloses which contain both methyl and hydroxypropyl substituents, fibrillation initiates after liquid droplet formation, suppressing the fibril growth to a sub-diffusive rate. Unlike for liquid droplets, the dissolution of fibrils back into the solvated state occurs with significant thermal hysteresis. We tune this hysteresis by altering the content of substituted hydroxypropyl moieties. This work provides a systematic study to decouple competing mechanisms during the phase transition of multi-functionalized macromolecules.


Asunto(s)
Celulosa , Éteres , Transición de Fase , Polímeros , Temperatura
13.
Biophys J ; 120(16): 3483-3497, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34022238

RESUMEN

Chemotactic migration of bacteria-their ability to direct multicellular motion along chemical gradients-is central to processes in agriculture, the environment, and medicine. However, current understanding of migration is based on studies performed in bulk liquid, despite the fact that many bacteria inhabit tight porous media such as soils, sediments, and biological gels. Here, we directly visualize the chemotactic migration of Escherichia coli populations in well-defined 3D porous media in the absence of any other imposed external forcing (e.g., flow). We find that pore-scale confinement is a strong regulator of migration. Strikingly, cells use a different primary mechanism to direct their motion in confinement than in bulk liquid. Furthermore, confinement markedly alters the dynamics and morphology of the migrating population-features that can be described by a continuum model, but only when standard motility parameters are substantially altered from their bulk liquid values to reflect the influence of pore-scale confinement. Our work thus provides a framework to predict and control the migration of bacteria, and active matter in general, in complex environments.


Asunto(s)
Bacterias , Quimiotaxis , Medios de Cultivo , Escherichia coli , Porosidad
14.
Soft Matter ; 17(14): 3840-3847, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885448

RESUMEN

Hydrogels are commonly used in research and energy, manufacturing, agriculture, and biomedical applications. These uses typically require hydrogel mechanics and internal water transport, described by the poroelastic diffusion coefficient, to be characterized. Sophisticated indentation-based approaches are typically used for this purpose, but they require expensive instrumentation and are often limited to planar samples. Here, we present Shape Relaxation (SHARE), an alternative way to assess the poroelastic diffusion coefficient of hydrogel particles that is cost-effective, straightforward, and versatile. This approach relies on first indenting a hydrogel particle via swelling within a granular packing, and then monitoring how the indented shape of the hydrogel relaxes after it is removed from the packing. We validate this approach using experiments in packings with varying grain sizes and confining stresses; these yield measurements of the poroelastic diffusion coefficient of polyacrylamide hydrogels that are in good agreement with those previously obtained using indentation approaches. We therefore anticipate that the SHARE approach will find broad use in a range of applications of hydrogels and other swellable soft materials.


Asunto(s)
Hidrogeles
15.
Soft Matter ; 17(43): 9893-9900, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34605524

RESUMEN

From pasta to biological tissues to contact lenses, gel and gel-like materials inherently soften as they swell with water. In dry, low-relative-humidity environments, these materials stiffen as they de-swell with water. Here, we use semi-dilute polymer theory to develop a simple power-law relationship between hydrogel elastic modulus and swelling. From this relationship, we predict hydrogel stiffness or swelling at arbitrary relative humidities. Our close predictions of properties of hydrogels across three different polymer mesh families at varying crosslinking densities and relative humidities demonstrate the validity and generality of our understanding. This predictive capability enables more rapid material discovery and selection for hydrogel applications in varying humidity environments.


Asunto(s)
Lentes de Contacto , Hidrogeles , Módulo de Elasticidad , Humanos , Humedad , Polímeros
16.
Proc Natl Acad Sci U S A ; 115(19): 4833-4838, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29686067

RESUMEN

Finger-like protrusions that form along fluid-fluid displacement fronts in porous media are often excited by hydrodynamic instability when low-viscosity fluids displace high-viscosity resident fluids. Such interfacial instabilities are undesirable in many natural and engineered displacement processes. We report a phenomenon whereby gradual and monotonic variation of pore sizes along the front path suppresses viscous fingering during immiscible displacement, that seemingly contradicts conventional expectation of enhanced instability with pore size variability. Experiments and pore-scale numerical simulations were combined with an analytical model for the characteristics of displacement front morphology as a function of the pore size gradient. Our results suggest that the gradual reduction of pore sizes act to restrain viscous fingering for a predictable range of flow conditions (as anticipated by gradient percolation theory). The study provides insights into ways for suppressing unwanted interfacial instabilities in porous media, and provides design principles for new engineered porous media such as exchange columns, fabric, paper, and membranes with respect to their desired immiscible displacement behavior.

17.
Small ; 16(9): e1903944, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31602809

RESUMEN

Polymer solutions are frequently used in enhanced oil recovery and groundwater remediation to improve the recovery of trapped nonaqueous fluids. However, applications are limited by an incomplete understanding of the flow in porous media. The tortuous pore structure imposes both shear and extension, which elongates polymers; moreover, the flow is often at large Weissenberg numbers, Wi, at which polymer elasticity in turn strongly alters the flow. This dynamic elongation can even produce flow instabilities with strong spatial and temporal fluctuations despite the low Reynolds number, Re. Unfortunately, macroscopic approaches are limited in their ability to characterize the pore-scale flow. Thus, understanding how polymer conformations, flow dynamics, and pore geometry together determine these nontrivial flow patterns and impact macroscopic transport remains an outstanding challenge. This review describes how microfluidic tools can shed light on the physics underlying the flow of polymer solutions in porous media at high Wi and low Re. Specifically, microfluidic studies elucidate how steady and unsteady flow behavior depends on pore geometry and solution properties, and how polymer-induced effects impact nonaqueous fluid recovery. This work thus provides new insights for polymer dynamics, non-Newtonian fluid mechanics, and applications such as enhanced oil recovery and groundwater remediation.

18.
Phys Rev Lett ; 123(15): 158004, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702300

RESUMEN

Hydrated granular packings often crack into discrete clusters of grains when dried. Despite its ubiquity, an accurate prediction of cracking remains elusive. Here, we elucidate the previously overlooked role of individual grain shrinkage-a feature common to many materials-in determining crack patterning using both experiments and simulations. By extending classical Griffith crack theory, we obtain a scaling law that quantifies how cluster size depends on the interplay between grain shrinkage, stiffness, and size-applicable to a diverse array of shrinkable granular packings.

19.
Soft Matter ; 15(48): 9920-9930, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31750508

RESUMEN

Understanding how bacteria move in porous media is critical to applications in healthcare, agriculture, environmental remediation, and chemical sensing. Recent work has demonstrated that E. coli, which moves by run-and-tumble dynamics in a homogeneous medium, exhibits a new form of motility when confined in a disordered porous medium: hopping-and-trapping motility, in which cells perform rapid, directed hops punctuated by intervals of slow, undirected trapping. Here, we use direct visualization to shed light on how these processes depend on pore-scale confinement and cellular activity. We find that hopping is determined by pore-scale confinement, and is independent of cellular activity; by contrast, trapping is determined by the competition between pore-scale confinement and cellular activity, as predicted by an entropic trapping model. These results thus help to elucidate the factors that regulate bacterial motion in porous media, and could help aid the development of new models of motility in heterogeneous environments.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Escherichia coli/fisiología , Hidrogeles , Movimiento , Porosidad
20.
Soft Matter ; 15(17): 3620-3626, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30973562

RESUMEN

Diverse applications-ranging from enhanced oil recovery, filtration, and lab on a chip sorting-rely on the flow-induced transport of deformable particles in porous media. However, how fluid flow can force such particles to squeeze through pore constrictions of complex geometries is poorly understood. Here, we study the transport of model deformable particles in millifluidic porous media with constrictions of tunable aspect ratio. We find that multiple particles can unexpectedly squeeze through large-aspect ratio constrictions, even when isolated particles cannot. This phenomenon arises from pairwise flow-mediated interactions between the particles: when one particle is trapped at a constriction, the increased fluid flow around it enables a second to squeeze past due to locally increased hydrodynamic stresses. This cooperative mechanism causes the particles to ultimately sort themselves by size through the pore space. By revealing a new mode of deformable particle transport in porous media, our work helps to inform real-world applications and provides a straightforward way to sort particles based on size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA