Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucl Med Biol ; 128-129: 108872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262310

RESUMEN

INTRODUCTION: Chelators play a crucial role in the development of metal-based radiopharmaceuticals, and with the continued interest in 68Ga and increasing availability of new radiometals such as 43Sc/47Sc and 45Ti, there is a growing demand for tailored chelators that can form stable complexes with these metals. This work reports the synthesis and characterization of a hexadentate tris-1,2-hydroxypyridonone chelator HOPO-O6-C4 and its in vitro and in vivo evaluation with the above mentioned radiometals. METHODS: To investigate the affinity of HOPO-O6-C4, macroscopic studies were performed with Sc3+, and Ga3+ followed by DFT structural optimization of the Sc3+, Ga3+ and Ti4+ complexes. Further tracer studies with 43Sc (and 47Sc), 45Ti, and 68Ga were performed to determine the potential for positron emission tomography (PET) imaging with these complexes. In vitro stability studies followed by in vivo imaging and biodistribution studies were performed to understand the kinetic stability of the resultant radiometal-complexes of HOPO-O6-C4. RESULTS: Promising radiolabeling results with HOPO-O6-C4 were obtained with 43Sc, 47Sc, 45Ti, and 68Ga radionuclides; rapid radiolabeling was observed at 37 °C and pH 7 in under 30-min. Apparent molar activity measurements were performed for radiolabeling of HOPO-O6-C4 with 43Sc (4.9 ± 0.26 GBq/µmol), 47Sc (1.58 ± 0.01 GBq/µmol), 45Ti (11.5 ± 1.6 GBq/µmol) and 68Ga (5.74 ± 0.7 GBq/µmol), respectively. Preclinical in vivo imaging studies resulted in promising results with [68Ga]Ga-HOPO-O6-C4 indicating a rapid clearance through hepatic excretion route and no decomplexation whereas [43Sc]Sc-HOPO-O6-C4, [47Sc]Sc-HOPO-O6-C4 and [45Ti]Ti-HOPO-O6-C4 showed modest and significant evidence of decomplexation, respectively. CONCLUSIONS: The tris-1,2-HOPO chelator HOPO-O6-C4 is a promising scaffold for elaboration into a 68Ga- based radiopharmaceutical.


Asunto(s)
Radioisótopos de Galio , Piridonas , Radiofármacos , Radiofármacos/química , Radioisótopos de Galio/química , Distribución Tisular , Titanio , Tomografía de Emisión de Positrones , Quelantes/química
2.
Front Chem ; 12: 1292566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389726

RESUMEN

A comprehensive investigation of the Hg2+ coordination chemistry and 197m/gHg radiolabeling capabilities of cyclen-based commercial chelators, namely, DOTA and DOTAM (aka TCMC), along with their bifunctional counterparts, p-SCN-Bn-DOTA and p-SCN-Bn-TCMC, was conducted to assess the suitability of these frameworks as bifunctional chelators for the 197m/gHg2+ theranostic pair. Radiolabeling studies revealed that TCMC and DOTA exhibited low radiochemical yields (0%-6%), even when subjected to harsh conditions (80°C) and high ligand concentrations (10-4 M). In contrast, p-SCN-Bn-TCMC and p-SCN-Bn-DOTA demonstrated significantly higher 197m/gHg radiochemical yields (100% ± 0.0% and 70.9% ± 1.1%, respectively) under the same conditions. The [197 m/gHg]Hg-p-SCN-Bn-TCMC complex was kinetically inert when challenged against human serum and glutathione. To understand the differences in labeling between the commercial chelators and their bifunctional counterparts, non-radioactive natHg2+ complexes were assessed using NMR spectroscopy and DFT calculations. The NMR spectra of Hg-TCMC and Hg-p-SCN-Bn-TCMC suggested binding of the Hg2+ ion through the cyclen backbone framework. DFT studies indicated that binding of the Hg2+ ion within the backbone forms a thermodynamically stable product. However, competition can form between isothiocyanate binding and binding through the macrocycle, which was experimentally observed. The isothiocyanate bound coordination product was dominant at the radiochemical scale as, in comparison, the macrocycle bound product was seen at the NMR scale, agreeing with the DFT result. Furthermore, a bioconjugate of TCMC (TCMC-PSMA) targeting prostate-specific membrane antigen was synthesized and radiolabeled, resulting in an apparent molar activity of 0.089 MBq/nmol. However, the complex demonstrated significant degradation over 24 h when exposed to human serum and glutathione. Subsequently, cell binding assays were conducted, revealing a Ki value ranging from 19.0 to 19.6 nM. This research provides crucial insight into the effectiveness of current commercial chelators in the context of 197m/gHg2+ radiolabeling. It underscores the necessity for the development of specific and customized chelators to these unique "soft" radiometals to advance 197m/gHg2+ radiopharmaceuticals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA