Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 278: 116857, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711627

RESUMEN

Contaminated land burdens the economy of many countries and must be dealt with. Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms. The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management. First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges. Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material. Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.


Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Ecosistema , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Contaminantes del Suelo/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-32516924

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are health-concerning organic compounds that accumulate in the environment. Bioremediation and phytoremediation are studied to develop eco-friendly remediation techniques. In this study, the effects of two plants (Medicago sativa L. and Trifoliumpratense L.) on the PAHs' bioaccessibility in an aged-contaminated soil throughout a long-term rhizoremediation trial was investigated. A bioaccessibility measurement protocol, using Tenax® beads, was adapted to the studied soil. The aged-contaminated soil was cultured with each plant type and compared to unplanted soil. The bioaccessible and residual PAH contents were quantified after 3, 6 and 12 months. The PAHs' desorption kinetics were established for 15 PAHs and described by a site distribution model. A common Tenax® extraction time (24 h) was established as a comparison basis for PAHs bioaccessibility. The rhizoremediation results show that M. sativa developed better than T. pratense on the contaminated soil. When plants were absent (control) or small (T. pratense), the global PAHs' residual contents dissipated from the rhizosphere to 8% and 10% of the total initial content, respectively. However, in the presence of M. sativa, dissipation after 12 months was only 50% of the total initial content. Finally, the PAHs' bioaccessible content increased more significantly in the absence of plants. This one-year trial brought no evidence that the presence of M. sativa or T. pratense on this tested aged-contaminated soil was beneficial in the PAH remediation process, compared to unplanted soil.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Medicago sativa , Suelo
3.
Chemosphere ; 194: 414-421, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29223812

RESUMEN

Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that tend to accumulate in the environment, threatening ecosystems and health. Brownfields represent an important tank for PAHs and require remediation. Researches to develop bioremediation and phytoremediation techniques are being conducted as alternatives to environmentally aggressive, expensive and often disruptive soil remediation strategies. The objectives of the present study were to investigate the potential of saponins (natural surfactants) as extracting agents and as bioremediation enhancers on an aged-contaminated soil. Two experiments were conducted on a brownfield soil containing 15 PAHs. In a first experiment, soil samples were extracted with saponins solutions (0; 1; 2; 4 and 8 g.L-1). In a second experiment conducted in microcosms (28 °C), soil samples were incubated for 14 or 28 days in presence of saponins (0; 2.5 and 5 mg g-1). CO2 emissions were monitored throughout the experiment. After the incubation, dehydrogenase activity was measured as an indicator of microbiological activity and residual PAHs were determined. In both experiments PAHs were determined using High-Performance Liquid Chromatography and Fluorimetric Detection. The 4 g.L-1 saponins solution extracted significantly more acenaphtene, fluorene, phenanthrene, anthracene, and pyrene than water. PAHs remediation was not enhanced in presence of saponins compared to control samples after 28 days. However CO2 emissions and dehydrogenase activities were significantly more important in presence of saponins, suggesting no toxic effect of these surfactants towards soil microbiota.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Saponinas/química , Contaminantes del Suelo/análisis , Tensoactivos/química , Biodegradación Ambiental , Suelo/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA